Олимпиадные задачи из источника «глава 12. Шутки и ошибки» для 11 класса - сложность 2-5 с решениями

Обозначим через<i>S</i>сумму следующего ряда:<div align="CENTER"> <!-- MATH \begin{equation} S=1-1+1-1+1-\ldots \end{equation} --> <table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"> <td nowrap align="CENTER"><i>S</i> = 1 - 1 + 1 - 1 + 1 -...</td> <td nowrap width="10" align="RIGHT"> (12.1)</td></tr> </table></div><br clear="ALL">Преобразовав равенство (<a href="https://mirolimp.ru/tasks/161543">12.1</a>), можно получить уравнение, из которого находится<i>S</i>:<div align="CENTER"> <i>S</i> = 1 - (1 - 1 + 1 - 1 +...) = 1 -...

<b>Из километров — в мили.</b>В задаче <a href="https://mirolimp.ru/tasks/160577">3.125</a>была введена фибоначчиева система счисления. Она оказывается удобной, когда нужно сделать перевод расстояния из километров в мили или наоборот. Предположим, что мы хотим узнать, сколько миль в 30 километрах. Для этого представляем число 30 в фибоначчиевой системе счисления:<div align="CENTER"> 30 = 21 + 8 + 1 = <i>F</i><sub>8</sub> + <i>F</i><sub>6</sub> + <i>F</i><sub>2</sub> = (1010001)<sub>F</sub>. </div>Теперь нужно сдвинуть каждое число на одну позицию вправо, получая<div align="CENTER"> <i>F</i><sub>7</sub> + <i&gt...

После экспериментов с мнимой единицей, Коля Васин занялся комплексной экспонентой. Пользуясь формулами задачи <a href="https://mirolimp.ru/tasks/161115">161115</a>, он смог доказать, что  sin <i>x</i>  всегда равен нулю, а  cos <i>x</i>  – единице: <div align="center"><img src="/storage/problem-media/61540/problem_61540_img_2.gif">    <img src="/storage/problem-media/61540/problem_61540_img_3.gif"></div>Где ошибка в приведённых равенствах?

Восстановите алфавит племени Мумбо-Юмбо из задачи <a href="https://mirolimp.ru/tasks/160340">2.6</a>.

Докажите, что 13-е число месяца с большей вероятностью приходится на пятницу, чем на другие дни недели. Предполагается, что мы живем по Григорианскому стилю.

Легко проверить равенства<div align="CENTER"> <table> <tr valign="MIDDLE"><td align="LEFT">log$\displaystyle \left(\vphantom{16+\dfrac{16}{15}}\right.$16 + $\displaystyle {\textstyle\dfrac{16}{15}}$$\displaystyle \left.\vphantom{16+\dfrac{16}{15}}\right)$ = log 16 + log$\displaystyle {\textstyle\dfrac{16}{15}}$;    </td> <td align="LEFT">log$\displaystyle \left(\vphantom{\dfrac{64}7-8}\right.$$\displaystyle {\textstyle\dfrac{64}{7}}$ - 8$\displaystyle \left.\vphantom{\dfrac{64}7-8}\right)$ = log$\displaystyle {\textstyle\dfrac{64}{7}}$ - log 8.</td> </tr> </table> </div>В каких еще случаях можно выносить логарифм за скобку?

Ученик Коля Васин при помощи метода математической индукции смог доказать, что в любом табуне все лошади одной масти. Если есть только одна лошадь, то она своей масти, так что база индукции верна. Для индуктивного перехода предположим, что есть<i>n</i>лошадей (с номерами от 1 до<i>n</i>). По индуктивному предположению лошади с номерами от 1 до<i>n</i>- 1 одинаковой масти. Аналогично лошади с номерами от 2 до<i>n</i>также имеют одинаковую масть. Но лошади с номерами от 2 до<i>n</i>- 1 не могут менять свою масть в зависимости от того как они сгруппированы — это лошади, а не хамелеоны. Поэтому все<i>n</i>лошадей должны быть одинаковой масти. Есть ли ошибка в этом рассуждении, и если есть, то какая?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка