Олимпиадные задачи из источника «параграф 2. Принцип Дирихле» для 4-9 класса - сложность 3 с решениями
параграф 2. Принцип Дирихле
НазадДокажите, что из 11 различных бесконечных десятичных дробей можно выбрать две такие, которые совпадают в бесконечном числе разрядов.
Даны 1002 различных числа, не превосходящих 2000. Докажите, что из них можно выбрать три таких числа, что сумма двух из них равна третьему. Останется ли это утверждение справедливым, если число 1002 заменить на 1001?
Дано 51 различное двузначное число (однозначные числа считаем двузначными с первой цифрой 0). Докажите, что из них можно выбрать 6 таких чисел, что никакие 2 из них не имеют одинаковых цифр ни в одном разряде.
Имеется 2<i>k</i> + 1 карточек, занумерованных числами от 1 до 2<i>k</i> + 1. Какое наибольшее число карточек можно выбрать так, чтобы ни один из извлечённых номеров не был равен сумме двух других извлечённых номеров?