Олимпиадные задачи из источника «глава 4. Арифметика остатков» для 10 класса - сложность 2 с решениями
Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?
Известно, что <i>ax</i><sup>4</sup> + <i>bx</i>³ + <i>cx</i>² + <i>dx + e</i>, где <i>a, b, c, d, e</i> – данные целые числа, при любом целом <i>x</i> делится на 7.
Доказать, что все числа <i>a, b, c, d, e</i> делятся на 7.
Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.
Доказать, что многочлен с целыми коэффициентами <i>a</i><sub>0</sub><i>x<sup>n</sup></i> + <i>a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x</i> + <i>a<sub>n</sub></i>, принимающий при <i>x</i> = 0 и <i>x</i> = 1 нечётные значения, не имеет целых корней.
Докажите, что для любого нечётного натурального числа <i>a</i> существует такое натуральное число <i>b</i>, что 2<sup><i>b</i></sup> – 1 делится на <i>a</i>.
В китайской натурофилософии выделяются пять первоэлементов природы – дерево, огонь, металл, вода и земля, которым соответствуют пять цветов – синий (или зелёный), красный, белый, чёрный и жёлтый. В восточном календаре с древних времен используется 12-летний животный цикл так, что каждому из 12 годов в цикле соответствует одно из животных. Кроме того, каждый год проходит под покровительством одной из стихий и окрашивается в один из цветов:
годы, оканчивающиеся на 0 и 1 – годы металла (цвет белый);
годы, оканчивающиеся на 2 и 3 – это годы воды (цвет чёрный);
годы, оканчивающиеся на 4 и 5 – годы дерева (цвет синий);
годы, оканчивающиеся на 6 и 7 – годы огня (цвет красный);
годы, оканчивающиеся на 8 и 9 – годы земли (цвет жёлтый).
В 60-летнем календарном цикле каждое...
Найдите наименьшее натуральное число, половина которого – квадрат, треть – куб, а пятая часть – пятая степень.
Какие цифры надо поставить вместо звёздочек, чтобы число 454** делилось на 2, 7 и 9?
На столе лежат книги, которые надо упаковать. Если их связать в одинаковые пачки по 4, по 5 или по 6 книг, то каждый раз останется одна лишняя книга, а если связать по 7 книг в пачку, то лишних книг не останется. Какое наименьшее количество книг может быть на столе?
Найдите наименьшее натуральное число, дающее при делении на 2, 3, 5, 7 остатки 1, 2, 4, 6 соответственно.
Пользуясь результатом задачи <a href="https://mirolimp.ru/tasks/160823">160823</a>, укажите в явном виде число <i>x</i>, которое удовлетворяет системе из задачи <a href="https://mirolimp.ru/tasks/160825">160825</a>.
Натуральные числа <i>m</i><sub>1</sub>, ..., <i>m<sub>n</sub></i> попарно взаимно просты. Докажите, что число <i>x</i> = (<i>m</i><sub>2</sub>...<i>m<sub>n</sub></i>)<sup>φ(<i>m</i><sub>1</sub>)</sup> является решением системы
<i>x</i> ≡ 1 (mod <i>m</i><sub>1</sub>),
<i>x</i> ≡ 0 (mod <i>m</i><sub>2</sub>),
...
<i>x</i> ≡ 0 (mod <i>m<sub>n</sub></i>).
Натуральные числа <i>m</i><sub>1</sub>, ..., <i>m<sub>n</sub></i> попарно взаимно просты. Докажите, что сравнение <i>a</i> ≡ <i>b</i> (mod <i>m</i><sub>1</sub><i>m</i><sub>2</sub>...<i>m<sub>n</sub></i>) равносильно системе
<i>a ≡ b</i> (mod <i>m</i><sub>1</sub>),
<i>a ≡ b</i> (mod <i>m</i><sub>2</sub>),
...
<i>a ≡ b</i> (mod <i>m<sub>n</sub></i>).
При каких целых <i>n</i> число <i>n</i>² + 3<i>n</i> + 1 делится на 55?
С помощью признака делимости Паскаля (см. задачу <a href="https://mirolimp.ru/tasks/160815">160815</a>) установите признаки делимости на числа 3, 9, 6, 8, 12, 15, 11, 7, 27, 37.
Пусть запись числа <i>N</i> в десятичной системе счисления имеет вид <span style="text-decoration: overline;"><i>a<sub>n</sub>a</i><sub><i>n</i>–1</sub>...<i>a</i><sub>1</sub><i>a</i><sub>0</sub></span> , <i>r<sub>i</sub></i> – остаток от деления числа 10<sup><i>i</i></sup> на <i>m</i> (<i>i</i> = 0, ..., <i>n</i>).
Докажите, что число <i>N</i> делится на <i>m</i> тогда и только тогда, когда число <i>M = a<sub>n</sub>r<sub>n</sub> + a</i><sub><i>n</i>–1</sub><i>r</i><sub>&...
Найдите все такие трёхзначные числа, которые в 12 раз больше суммы своих цифр.
При каких <i>x</i> и <i>y</i> число <span style="text-decoration: overline;"><i>xxyy</i></span> является квадратом натурального числа?
Аналогичные указанному в задаче <a href="https://mirolimp.ru/tasks/160808">160808</a> признаки делимости существуют и для всех чисел вида 10<i>n</i> ± 1 и их делителей. Например, существует признак делимости на 21, из которого получается и признак делимости на 7. Как устроен признак делимости на 21?
Существует следующий способ проверить, делится ли данное число <i>N</i> на 19:
1) отбрасываем последнюю цифру у числа <i>N</i>;
2) прибавляем к полученному числу произведение отброшенной цифры на 2;
3) с полученным числом проделываем операции 1) и 2) до тех пор, пока не останется число, меньшее или равное 19.
4) если остается 19, то 19 делится на <i>N</i>, в противном случае <i>N</i> не делится на 19.
Докажите справедливость этого признака делимости.
Докажите, что в записи числа 2<sup>30</sup> есть по крайней мере две одинаковые цифры, не вычисляя его.
Какие цифровые корни (см. задачу <a href="https://mirolimp.ru/tasks/160794">160794</a>) бывают у полных квадратов и полных кубов?
Найдите наименьшее число, запись которого состоит лишь из нулей и единиц, делящееся на 225.
Последовательность {<i>x<sub>n</sub></i>} устроена следующим образом: <i>x</i><sub>1</sub> = 3<sup>2001</sup>, а каждый следующий член равен сумме цифр предыдущего. Найдите <i>x</i><sub>5</sub>.
Докажите, что число 192021...7980 делится на 1980.