Олимпиадные задачи из источника «глава 5. Числа, дроби, системы счисления» для 2-8 класса - сложность 3 с решениями

Найти все такие натуральные <i>n</i>, для которых числа <sup>1</sup>/<sub><i>n</i></sub> и <sup>1</sup>/<sub><i>n</i>+1</sub> выражаются конечными десятичными дробями.

Проанализируйте при помощи ним-сумм игру ``Йога''из задачи <a href="https://mirolimp.ru/tasks/160647">4.21</a>.

<b>Марсианские амебы II.</b>При помощи ним-сумм (смотри задачу<a href="https://mirolimp.ru/tasks/160914">5.76</a>) можно исследовать самые разные игры и процессы. Например, можно получить еще одно решение задачи <a href="https://mirolimp.ru/tasks/160646">4.20</a>. Постройте на множестве марсианских амеб{<i>A</i>, <i>B</i>, <i>C</i>} функцию<i>f</i>, для которой выполнялись бы равенства<div align="CENTER"> <i>f</i> (<i>A</i>) $\displaystyle \oplus$ <i>f</i> (<i>B</i>) = <i>f</i> (<i>C</i>),    <i>f</i> (<i>A</i>) $\displaystyle \oplus$ <i>f</i> (<i>C</i>)...

<b>Игра ``Ним''.</b>Имеется несколько кучек камней. Двое по очереди берут из них камни. За один ход разрешается взять любое (ненулевое) количество камней, но только из одной кучки. Выигрывает тот, кто взял последний камень. Для анализа игры каждому набору кучек камней<i>m</i><sub>1</sub>,<i>m</i><sub>2</sub>, ...,<i>m</i><sub>l</sub>поставим в соответствие его ним сумму (<a href="https://mirolimp.ru/tasks/160914">5.1</a>). а) Докажите, что если игрок делает ход из позиции с нулевой ним-суммой, то в результате получается позиция с ним-суммой<i>n</i>$\ne$0. б) Докажите, что из позиции с ненулевой ним-суммой всегда можно сделать ход в позицию с ним-суммой<i>n&...

<b>Ним-сумма.</b>Будем говорить, что число<i>n</i>является ним-суммой чисел<i>m</i>и<i>k</i>(<i>m</i>$\oplus$<i>k</i>=<i>n</i>), если оно получается из чисел<i>m</i>и<i>k</i>после следующих преобразований. 1)<i>m</i>и<i>k</i>записываются в двоичной системе счисления<div align="CENTER"> <i>m</i> = (<i>m</i><sub>s</sub>...<i>m</i><sub>1</sub><i>m</i><sub>0</sub>)<sub>2</sub>,        <i>k</i> = (<i>k</i><sub>s</sub>...<i>k</i><sub>1</sub><i>k</i><sub>0</sub>)<sub>2...

<b>Задача Иосифа Флавия.</b><i>n</i>человек выстраиваются по кругу и нумеруются числами от 1 до<i>n</i>. Затем из них исключается каждый второй до тех пор, пока не останется только один человек. Например, если<i>n</i>= 10, то порядок исключения таков: 2, 4, 6, 8, 10, 3, 7, 1, 9, так что остается номер 5. Для данного<i>n</i>будем обозначать через<i>J</i>(<i>n</i>) номер последнего оставшегося человека. Докажите, что а)<i>J</i>(2<i>n</i>) = 2<i>J</i>(<i>n</i>) - 1; б)<i>J</i>(2<i>n</i>+ 1) = 2<i>J</i>(<i>n</i>) + 1; в) если<i>n</i>= (1<i>b</i><sub>m - 1</sub><i>b</i>&...

<b>Ханойская башня и двоичная система счисления.</b>Рассмотрим два процесса, каждый из которых состоит из 2<sup>8</sup>- 1 шагов. Первый — это процесс решения головоломки ``Ханойская башня'' (смотри задачу<a href="https://mirolimp.ru/tasks/160315">1.42</a>) при помощи оптимального алгоритма. Второй — это процесс прибавления единицы, который начинается с 0 и заканчивается числом 2<sup>8</sup>- 1. Опишите связь между этими двумя процессами.

<b>Карточный фокус.</b>а) Берется колода из 27 карт (без одной масти). Ваш друг загадывает одну из карт. После чего вы раскладываете все карты в три равные кучки, кладя каждый раз по одной карте (в первую кучку, затем во вторую, затем в третью, потом снова в первую и т. д.). Ваш друг указывает на ту кучку, в которой лежит его карта. Далее вы складываете все три кучки вместе, вставляя при этом указанную кучку между двумя другими. Эта процедура повторяется еще два раза. На каком месте в колоде окажется загаданная карта, после того, как вы сложите вместе три кучки в третий раз? б) На каком месте окажется загаданная карта, если с самого начала было 3<i>n</i>(<i>n</i>< 9) карт?

Коля Васин задумал число от 1 до 31 включительно и выбрал из 5 данных карточек<div align="CENTER"> <table cellpadding="3" border="1"> <tr><td align="CENTER">1</td> <td align="CENTER">3</td> <td align="CENTER">5</td> <td align="CENTER">7</td> </tr> <tr><td align="CENTER">9</td> <td align="CENTER">11</td> <td align="CENTER">13</td> <td align="CENTER">15</td> </tr> <tr><td align="CENTER">17</td> <td align="CENTER">19</td> <td align="CENTER">21</td> <td align="CENTER">2...

  Число  <i>N</i> = 142857  обладает и рядом других свойств. Например:  2·142857 = 285714,  3·142857 = 428571,  ..., то есть при умножении на 1, 2, 3, ..., 6 цифры циклически переставляются;  14 + 28 + 57 = 99;  <i>N</i><sup>2</sup> = 20408122449,  20408 + 122449 = 142857 = <i>N</i>.

  Аналогичные операции можно проделывать и с другими периодами дробей. Что получается для чисел 1/17, 1/19? Объясните эти факты.

Периодом дроби <sup>1</sup>/<sub>7</sub> является число  <i>N</i> = 142857.  Оно обладает следующим свойством: сумма двух половин периода – число из одних девяток

142 + 857 = 999).  Докажите в общем случае, что для простого  <i>q</i> > 5  и натурального  <i>p < q</i>  период дроби <sup><i>p</i></sup>/<sub><i>q</i></sub> есть такое 2<i>n</i>-значное число  <i>N</i> = <span style="text-decoration: overline;"><i>N</i><sub>1</sub><i>N</i><sub>2</sub></span>,  что  <i>N</i><sub>1</sub> + <i>N</i><sub>2</sub> = <img width="54" he...

Докажите следующие равенства:

  а) <img width="196" height="90" align="MIDDLE" border="0" src="/storage/problem-media/60872/problem_60872_img_2.gif"> = <img width="86" height="42" align="MIDDLE" border="0" src="/storage/problem-media/60872/problem_60872_img_3.gif"> + <img width="86" height="42" align="MIDDLE" border="0" src="/storage/problem-media/60872/problem_60872_img_4.gif">;

  б) <img width="196" height="90" align="MIDDLE" border="0" src="/storage/problem-media/60872/problem_60872_img_5.gif"> = 2 cos<img width="41" height="43" align=&qu...

Избавьтесь от иррациональности в знаменателе:

<table> <tr><td align="LEFT">а) <img width="57" height="49" align="MIDDLE" border="0" src="/storage/problem-media/60870/problem_60870_img_2.gif">;    </td> <td align="LEFT"> д) <img width="118" height="49" align="MIDDLE" border="0" src="/storage/problem-media/60870/problem_60870_img_3.gif">;</td> </tr> <tr><td align="LEFT"> б) <img width="109" height="49" align="MIDDLE" border="0" src="/storage/problem-media/60870/problem_60870_img_4.gif">;    </td> <td align="LEFT"> е) &lt...

Вычислите: а)$\sqrt[3]{20+\sqrt{392}}$+$\sqrt[3]{20-\sqrt{392}}$; б)$\sqrt[3]{5\sqrt{2}+7}$-$\sqrt[3]{5\sqrt{2}-7}$; в)$\sqrt{x+6\sqrt{x-9}}$+$\sqrt{x-6\sqrt{x-9}}$    (9$\leqslant$<i>x</i>$\leqslant$18).

Докажите равенство<div align="CENTER"> $\displaystyle \sqrt[3]{6+\sqrt{\frac{847}{27}}}$ + $\displaystyle \sqrt[3]{6-\sqrt{\frac{847}{27}}}$ = 3. </div>

Может ли

а) сумма двух рациональных чисел быть иррациональной?

б) сумма двух иррациональных чисел быть рациональной?

в) иррациональное число в иррациональной степени быть рациональным?

Докажите, что уравнения

  а)  8<i>x</i><sup>4</sup> + 4<i>y</i><sup>4</sup> + 2<i>z</i><sup>4</sup> = <i>t</i><sup>4</sup>;

  б)  <i>x</i>² + <i>y</i>² + <i>z</i>² = 2<i>xyz</i>;

  в)  <i>x</i>² + <i>y</i>² + <i>z</i>² + <i>u</i>² = 2<i>xyzu</i>;

  г)  3<sup><i>n</i></sup> = <i>x</i>² + <i>y</i>²

не имеют решений в натуральных числах.

Докажите иррациональность следующих чисел:а)  <img align="absmiddle" src="/storage/problem-media/60851/problem_60851_img_2.gif"> ; б)  <img align="absmiddle" src="/storage/problem-media/60851/problem_60851_img_3.gif"> ; в)  <img align="absmiddle" src="/storage/problem-media/60851/problem_60851_img_4.gif"> ; г)  <img align="absmiddle" src="/storage/problem-media/60851/problem_60851_img_5.gif"> ; д)  cos 10° ; е)  tg 10° ; ж)  sin 1° ; з)  log<sub><sub>2</sub></sub>3 .

Коля Васин задумал написать программу, которая дала бы возможность компьютеру печатать одну за другой цифры десятичной записи числа <img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60847/problem_60847_img_2.gif">. Докажите, что даже если бы машина не ломалась, то Колина затея все равно бы не удалась, и рано или поздно компьютер напечатал бы неверную цифру.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка