Олимпиадные задачи из источника «глава 12. Вычисления и метрические соотношения» для 10-11 класса - сложность 3-5 с решениями
глава 12. Вычисления и метрические соотношения
НазадВ плоскости дан треугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub> и прямая <i>l</i> вне его, образующая с продолжением сторон треугольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>A</i><sub>3</sub><i>A</i><sub>1</sub> соответственно углы α<sub>3</sub>, α<sub>1</sub>, α<sub>2</sub>. Через точки <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub> проводятся прямые, образующие с &l...
Квадрат <i>ABCD</i>вращается вокруг своего неподвижного центра. Найдите геометрическое место середин отрезков <i>PQ</i>, где <i>P</i> — основание перпендикуляра, опущенного из точки <i>D</i>на неподвижную прямую <i>l</i>, а <i>Q</i> — середина стороны <i>AB</i>.
В треугольнике <i>ABC</i>угол <i>C</i>прямой. Докажите, что при гомотетии с центром <i>C</i>и коэффициентом 2 вписанная окружность переходит в окружность, касающуюся описанной окружности.
Найдите отношение сторон треугольника, одна из медиан которого делится вписанной окружностью на три равные части.
В равнобедренном треугольнике <i>ABC</i> с основанием <i>BC</i> угол при вершине <i>A</i> равен 80°. Внутри треугольника <i>ABC</i> взята точка <i>M</i> так, что ∠<i>MBC</i> = 30° и ∠<i>MCB</i> = 10°. Найдите величину угла <i>AMC</i>.
Пусть α, β и γ - углы треугольника ABC. Докажите, что а) <i>ctg</i>$\alpha$+<i>ctg</i>$\beta$+<i>ctg</i>$\gamma$= (<i>a</i><sup>2</sup>+<i>b</i><sup>2</sup>+<i>c</i><sup>2</sup>)/4<i>S</i>; б) <i>a</i><sup>2</sup><i>ctg</i>$\alpha$+<i>b</i><sup>2</sup><i>ctg</i>$\beta$+<i>c</i><sup>2</sup><i>ctg</i>$\gamma$= 4<i>S</i>.