Олимпиадные задачи из источника «глава 13. Векторы» для 10 класса - сложность 2-3 с решениями

Внутри треугольника<i>ABC</i>взята точка <i>O</i>. Докажите, что<div align="CENTER"> <i>S</i><sub>BOC</sub><sup> . </sup>$\displaystyle \overrightarrow{OA}$ + <i>S</i><sub>AOC</sub><sup> . </sup>$\displaystyle \overrightarrow{OB}$ + <i>S</i><sub>AOB</sub><sup> . </sup>$\displaystyle \overrightarrow{OC}$ = $\displaystyle \overrightarrow{0}$. </div>

Пусть <i>E</i>и <i>F</i> — середины сторон<i>AB</i>и <i>CD</i>четырехугольника<i>ABCD</i>,<i>K</i>,<i>L</i>,<i>M</i>и <i>N</i> — середины отрезков<i>AF</i>,<i>CE</i>,<i>BF</i>и <i>DE</i>. Докажите, что<i>KLMN</i> — параллелограмм.

Сумма четырех единичных векторов равна нулю. Докажите, что их можно разбить на две пары противоположных векторов.

Стороны треугольника <i>T</i>параллельны медианам треугольника <i>T</i><sub>1</sub>. Докажите, что медианы треугольника <i>T</i>параллельны сторонам треугольника <i>T</i><sub>1</sub>.

а) Докажите, что из медиан треугольника можно составить треугольник. б) Из медиан треугольника<i>ABC</i>составлен треугольник<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>, а из медиан треугольника<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>составлен треугольник<i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub>. Докажите, что треугольники<i>ABC</i>и <i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub>подобны, причем коэффициент подобия...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка