Олимпиадные задачи из источника «параграф 3. Повороты на произвольные углы»
параграф 3. Повороты на произвольные углы
НазадПо арене цирка, являющейся кругом радиуса 10 м, бегает лев. Двигаясь по ломаной линии, он пробежал 30 км. Докажите, что сумма всех углов его поворотов не меньше 2998 радиан.
Докажите, что три прямые, симметричные произвольной прямой, проходящей через точку пересечения высот треугольника, относительно сторон треугольника, пересекаются в одной точке.
На векторах$\overrightarrow{A_iB_i}$, где<i>i</i>= 1,...,<i>k</i>, построены правильные одинаково ориентированные<i>n</i>-угольники<i>A</i><sub>i</sub><i>B</i><sub>i</sub><i>C</i><sub>i</sub><i>D</i><sub>i</sub>... (<i>n</i>$\ge$4). Докажите, что<i>k</i>-угольники<i>C</i><sub>1</sub>...<i>C</i><sub>k</sub>и <i>D</i><sub>1</sub>...<i>D</i><sub>k</sub>правильные одинаково ориентированные тогда и только тогда, когда<i>k</i>-угольники<i>A</i><sub>1</sub>...<i>A</i><sub>k</sub>и <i>...
Дан треугольник<i>ABC</i>. Постройте прямую, делящую пополам его площадь и периметр.
Треугольник<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>получен из треугольника<i>ABC</i>поворотом на угол $\alpha$($\alpha$< 180<sup><tt>o</tt></sup>) вокруг центра его описанной окружности. Докажите, что точки пересечения сторон<i>AB</i>и <i>A</i><sub>1</sub><i>B</i><sub>1</sub>,<i>BC</i>и <i>B</i><sub>1</sub><i>C</i><sub>1</sub>,<i>CA</i>и <i>C</i><sub>1</sub><i>A</i><sub>1</sub>(или их продолжений) являются вершинами треугольника, подобного треугольнику<i>ABC</i>.
Для данного треугольника<i>ABC</i>, один из углов которого больше120<sup><tt>o</tt></sup>, найдите точку, сумма расстояний от которой до вершин минимальна.
По двум прямым, пересекающимся в точке <i>P</i>, равномерно с одинаковой скоростью движутся две точки: по одной прямой — точка <i>A</i>, по другой — точка <i>B</i>. Через точку <i>P</i>они проходят не одновременно. Докажите, что в любой момент времени описанная окружность треугольника<i>ABP</i>проходит через некоторую фиксированную точку, отличную от <i>P</i>.
На плоскости лежат две одинаковые буквы $\Gamma$. Концы коротких палочек этих букв обозначим <i>A</i>и <i>A'</i>. Длинные палочки разбиты на <i>n</i>равных частей точками<i>A</i><sub>1</sub>,...,<i>A</i><sub>n - 1</sub>;<i>A</i><sub>1</sub>',...,<i>A</i><sub>n - 1</sub>' (точки деления нумеруются от концов длинных палочек). Прямые<i>AA</i><sub>i</sub>и <i>A'A</i><sub>i</sub>' пересекаются в точке <i>X</i><sub>i</sub>. Докажите, что точки<i>X</i><sub>1</sub>,...,<i>X</i><sub>n - 1</sub>образуют выпуклый многоугольник....
Поворот с центром <i>O</i>переводит прямую <i>l</i><sub>1</sub>в прямую <i>l</i><sub>2</sub>, а точку <i>A</i><sub>1</sub>, лежащую на прямой <i>l</i><sub>1</sub>, — в точку <i>A</i><sub>2</sub>. Докажите, что точка пересечения прямых <i>l</i><sub>1</sub>и <i>l</i><sub>2</sub>лежит на описанной окружности треугольника<i>A</i><sub>1</sub><i>OA</i><sub>2</sub>.
Даны точки <i>A</i>и <i>B</i>и окружность <i>S</i>. Постройте на окружности <i>S</i>такие точки <i>C</i>и <i>D</i>, что<i>AC</i>|<i>BD</i>и дуга<i>CD</i>имеет данную величину $\alpha$.
Докажите, что при повороте на угол$\alpha$с центром в начале координат точка с координатами (<i>x</i>,<i>y</i>) переходит в точку<div align="CENTER"> (<i>x</i> cos$\displaystyle \alpha$ - <i>y</i> sin$\displaystyle \alpha$, <i>x</i> sin$\displaystyle \alpha$ + <i>y</i> cos$\displaystyle \alpha$). </div>