Олимпиадные задачи из источника «глава 22. Выпуклые и невыпуклые многоугольники» для 1-8 класса - сложность 1-3 с решениями

а) Нарисуйте многоугольник и точку <i>O</i>внутри его так, чтобы ни одна сторона не была видна из нее полностью. б) Нарисуйте многоугольник и точку <i>O</i>вне его так, чтобы ни одна сторона не была видна из нее полностью.

Докажите, что если какая-либо хорда выпуклой фигуры$\Phi$делит её на две части равного периметра, но разной площади, то существует выпуклая фигура$\Phi{^\prime}$, имеющая тот же периметр, что и$\Phi$, но большую площадь.

Докажите, что если существует фигура$\Phi{^\prime}$, площадь которой не меньше площади фигуры$\Phi$, а периметр — меньше, то существует фигура того же периметра, что и$\Phi$, но большей площади.

Докажите, что для любой невыпуклой фигуры$\Psi$существует выпуклая фигура с меньшим периметром и большей площадью.

Выпуклый многоугольник<i>A</i><sub>1</sub>...<i>A</i><sub>n</sub>лежит внутри окружности<i>S</i><sub>1</sub>, а выпуклый многоугольник<i>B</i><sub>1</sub>...<i>B</i><sub>m</sub>— внутри<i>S</i><sub>2</sub>. Докажите, что если эти многоугольники пересекаются, то одна из точек<i>A</i><sub>1</sub>, ...,<i>A</i><sub>n</sub>лежит внутри<i>S</i><sub>2</sub>или одна из точек<i>B</i><sub>1</sub>, ...,<i>B</i><sub>m</sub>лежит внутри<i>S</i><sub>1</sub>.

Назовем выпуклый семиугольник<i>особым</i>, если три его диагонали пересекаются в одной точке. Докажите, что, слегка пошевелив одну из вершин особого семиугольника, можно получить неособый семиугольник.

Среди всех таких чисел <i>n</i>, что любой выпуклый 100-угольник можно представить в виде пересечения (т. е. общей части)<i>n</i>треугольников, найдите наименьшее.

На плоскости дано несколько правильных<i>n</i>-угольников. Докажите, что выпуклая оболочка их вершин имеет не менее <i>n</i>углов.

Внутри квадрата<i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub>лежит выпуклый четырёхугольник<i>A</i><sub>5</sub><i>A</i><sub>6</sub><i>A</i><sub>7</sub><i>A</i><sub>8</sub>. Внутри<i>A</i><sub>5</sub><i>A</i><sub>6</sub><i>A</i><sub>7</sub><i>A</i><sub>8</sub>выбрана точка<i>A</i><sub>9</sub>. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что из этих девяти точек можно выбрать 5 точек, расположенных в вершинах выпуклого пятиугол...

На плоскости дано пять точек, причем никакие три из них не лежат на одной прямой. Докажите, что четыре из этих точек расположены в вершинах выпуклого четырехугольника.

На плоскости дано <i>n</i>точек, причем любые четыре из них являются вершинами выпуклого четырехугольника. Докажите, что эти точки являются вершинами выпуклого<i>n</i>-угольника.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка