Олимпиадные задачи из источника «параграф 9. Прямая Симсона» для 4-8 класса - сложность 1-5 с решениями
параграф 9. Прямая Симсона
НазадТочки <i>A</i>,<i>B</i>и <i>C</i>лежат на одной прямой, точка <i>P</i> — вне этой прямой. Докажите, что центры описанных окружностей треугольников <i>ABP</i>,<i>BCP</i>,<i>ACP</i>и точка <i>P</i>лежат на одной окружности.
а) Докажите, что основания перпендикуляров, опущенных из точки <i>P</i> описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (<i>прямая Симсона</i>). б) Основания перпендикуляров, опущенных из некоторой точки <i>P</i> на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка <i>P</i> лежит на описанной окружности треугольника.