Олимпиадные задачи из источника «выпуск 6» для 2-8 класса - сложность 2-4 с решениями

а) Из 19 шаров 2 радиоактивны. Про любую кучку шаров за одну проверку можно узнать, имеется ли в ней хотя бы один радиоактивный шар (но нельзя узнать, сколько их). Доказать, что за 8 проверок всегда можно выделить оба радиоактивных шара.б) Из 11 шаров два радиоактивны. Доказать, что менее чем за 7 проверок нельзя гарантировать нахождение обоих радиоактивных шаров,

а за 7 проверок их всегда можно обнаружить.

Любую конечную систему точек плоскости можно покрыть несколькими непересекающимися кругами, сумма диаметров которых меньше количества точек и расстояние между любыми двумя из которых<nobr>больше 1.</nobr>Докажите это.Расстояние между двумя кругами — это расстояние между их ближайшими точками.

Если сумма дробей   <img align="absmiddle" src="/storage/problem-media/73562/problem_73562_img_2.gif">   равна 0, то сумма дробей   <img align="absmiddle" src="/storage/problem-media/73562/problem_73562_img_3.gif">   тоже равна 0. Докажите это.

Предположим, что в каждом номере нашего журнала в задачнике «Кванта» будет пять задач по математике. Обозначим через<nobr><i>f</i>(<i>x</i>, <i>y</i>)</nobr>номер первой из задач<nobr><i>x</i>-го</nobr>номера за<nobr><i>y</i>-й</nobr>год. Напишите общую формулу для<nobr><i>f</i>(<i>x</i>, <i>y</i>),</nobr>где<nobr>1 <font face="Symbol">£</font> <i>x</i> <font face="Symbol">£</font> 12</nobr>и<nobr>1970 <font face="Symbol">£</font> <i>x</i> <font face="Symbol">£</font> 1989.</nobr>Решите уравнение<nobr><i&g...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка