Олимпиадные задачи из источника «выпуск 6» - сложность 2-4 с решениями

Если<nobr><i>x</i><sub>1</sub> < <i>x</i><sub>2</sub> < <i>x</i><sub>3</sub> < ... < <i>x</i><sub><i>n</i></sub> —</nobr>натуральные числа, то сумма<nobr><i>n</i> – 1</nobr>дробей,<nobr><i>k</i>-я из</nobr>которых, где<nobr><i>k</i> < <i>n</i>,</nobr>равна отношению квадратного корня из разности<nobr><i>x</i><sub><i>k</i>+1</sub> - <i>x</i><sub><i>k</i></sub></nobr>к числу<i>x</i><sub><i>k</i>+1</sub>, меньше суммы чисел 1,<sup>1</sup>/<sub&g...

В любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник. Докажите это.

Какому условию должны удовлетворять коэффициенты <i>a, b, c</i> уравнения  <i>x</i>³ + <i>ax</i>² + <i>bx + c</i>,  чтобы три его корня составляли арифметическую прогрессию?

а) Дно прямоугольной коробки было выложено плитками размерами 2×2 и 1×4. Плитки высыпали из коробки и при этом потеряли одну плитку 2×2. Вместо неё удалось достать плитку 1×4. Докажите, что теперь выложить дно коробки плитками не удастся.

б) Останется ли верным утверждение задачи, если вместо плиток 1×4 и 2×2 рассматривать плитки из трёх квадратиков: прямоугольные 1×3 и "уголки").

Три окружности радиуса <i>R</i>проходят через точку <i>H</i>; <i>A</i>,<i>B</i>и <i>C</i> — точки их попарного пересечения, отличные от <i>H</i>. Докажите, что: а) <i>H</i> — точка пересечения высот треугольника <i>ABC</i>; б) радиус описанной окружности треугольника <i>ABC</i>тоже равен <i>R</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка