Олимпиадные задачи из источника «выпуск 4»

а) Разбейте отрезок  [0, 1]  на чёрные и белые отрезки так, чтобы для любого многочлена <i>p</i>(<i>x</i>) степени не выше второй сумма приращений <i>p</i>(<i>x</i>) по всем чёрным отрезкам равнялась сумме приращений <i>p</i>(<i>x</i>) по всем белым интервалам.

(Приращением многочлена <i>p</i> по отрезку  (<i>a, b</i>)  называется число  <i>p</i>(<i>b</i>) – <i>p</i>(<i>a</i>).) б) Удастся ли проделать аналогичную операцию для всех многочленов степени не выше 1995?  

Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов.

Докажите, что для этой цели ему

  а) достаточно четырёх взвешиваний и

  б) недостаточно трёх.

а) Существуют ли такие натуральные числа <i>a, b, c</i>, что из двух чисел  <sup><i>a</i></sup>/<i><sub>b</sub> + <sup>b</sup></i>/<i><sub>c</sub> + <sup>c</sup></i>/<sub><i>a</i></sub>  и  <sup><i>b</i></sup>/<i><sub>a</sub> + <sup>c</sup></i>/<i><sub>b</sub> + <sup>a</sup></i>/<sub><i>c</i></sub>  ровно одно – целое? б) Докажите, что если они оба целые, то  <i>a = b = c</i>.

Прямая отрезает от правильного <i>n</i>-угольника со стороной 1 треугольник <i>APQ</i> так, что  <i>AP + AQ</i> = 1  (<i>A</i> – вершина <i>n</i>-угольника).

Найдите сумму углов, под которыми отрезок <i>PQ</i> виден из всех вершин <i>n</i>-угольника, кроме <i>A</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка