Олимпиадные задачи из источника «9. Турниры» для 9 класса - сложность 1-3 с решениями
9. Турниры
НазадТеннисист для тренировки играет каждый день хотя бы одну партию; при этом, чтобы не перетрудиться, он играет не более 12 партий в неделю.
Докажите, что можно найти несколько таких подряд идущих дней, в течение которых теннисист сыграл ровно двадцать партий.
Учащиеся 57-й школы решили провести чемпионат по мини-футболу. Так как ворота на школьном дворе разного размера, то игроки хотят составить расписание игр так, чтобы:
1) Каждая команда сыграла с каждой ровно по одному разу.
2) Каждая команда чередовала свои игры – то на плохой стороне, то на хорошей стороне двора.
а) Удастся ли это сделать, если в турнире принимают участие 10 команд?
б) Можно ли при этом составить расписание так, чтобы каждый день каждая команда играла ровно одну игру?
Сборная России по футболу выиграла у сборной Туниса со счетом 9 : 5. Докажите, что по ходу матча был момент, когда сборной России оставалось забить столько голов, сколько уже забила сборная Туниса.
Трое друзей играли в шашки. Один из них сыграл 25 игр, а другой – 17 игр. Мог ли третий участник сыграть а) 34; б) 35; в) 56 игр?