Олимпиадные задачи из источника «1953 год» для 5-8 класса - сложность 2 с решениями
В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Могут ли они вращаться?
Доказать, что наибольший общий делитель суммы двух чисел и их наименьшего общего кратного равен наибольшему общему делителю самих чисел.
<i>A</i> – вершина правильного звёздчатого пятиугольника. Ломаная <i>AA'BB'CC'DD'EE'</i> является его внешним контуром. Прямые <i>AB</i> и <i>DE</i> продолжены до пересечения в точке <i>F</i>. Докажите, что многоугольник <i>ABB'CC'DED'</i> равновелик четырёхугольнику <i>AD'EF</i>.
Разделить отрезок пополам с помощью угольника. (С помощью угольника можно проводить прямые и восстанавливать перпендикуляры, опускать перпендикуляры нельзя.)
Каково минимальное целое число вида 111...11, делящееся на 333...33 (100 троек)?