Олимпиадные задачи из источника «1957 год» для 11 класса - сложность 4 с решениями
Три равные окружности касаются друг друга. Из произвольной точки окружности, касающейся внутренним образом этих окружностей, проведены касательные к ним. Доказать, что сумма длин двух касательных равна длине третьей.
Плоский многоугольник<i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>n</sub>составлен из<i>n</i>твёрдых стержней, соединенных шарнирами. Можно ли его деформировать в треугольник?