Олимпиадные задачи из источника «9 класс, 1 тур» - сложность 3-4 с решениями
9 класс, 1 тур
НазадДоказать, что в прямоугольнике площади 1 можно расположить непересекающиеся круги так, чтобы сумма их радиусов была равна 1962.
Дана система уравнений:
<img width="20" height="111" align="MIDDLE" border="0" src="/storage/problem-media/78282/problem_78282_img_2.gif"><img width="247" height="111" align="MIDDLE" border="0" src="/storage/problem-media/78282/problem_78282_img_3.gif">
Какие значения может принимать <i>x</i><sub>25</sub>?
Даны два пересекающихся отрезка<i>AС</i>и<i>BD</i>. На этих лучах выбираются точки<i>M</i>и<i>N</i>(соответственно) так, что<i>AM</i>=<i>BN</i>. Найти положение точек<i>M</i>и<i>N</i>, при котором длина отрезка<i>MN</i>минимальна (сравните с<a href="http://www.problems.ru/view_problem_details_new.php?id=78284">задачей 1 для 10 класса</a>).