Олимпиадные задачи из источника «11 класс, 2 тур» для 11 класса - сложность 2-4 с решениями
11 класс, 2 тур
НазадДоказать, что на сфере нельзя так расположить три дуги больших окружностей в300<sup><tt>o</tt></sup>каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов. <i>Примечание</i>: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр.
Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное число нулей, либо бесконечное число девяток.
Доказать, что не существует попарно различных натуральных чисел <i>x, y, z, t</i>, для которых было бы справедливо соотношение <i>x<sup>x</sup> + y<sup>y</sup> = z<sup>z</sup> + t<sup>t</sup></i>.