Олимпиадные задачи из источника «1963 год» для 7-10 класса - сложность 4 с решениями
Доказать, что на сфере нельзя так расположить три дуги больших окружностей в300<sup><tt>o</tt></sup>каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов. <i>Примечание</i>: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр.
<i>A'</i>,<i>B'</i>,<i>C'</i>,<i>D'</i>,<i>E'</i>— середины сторон выпуклого пятиугольника<i>ABCDE</i>. Доказать, что площади пятиугольников<i>ABCDE</i>и<i>A'B'C'D'E'</i>связаны соотношением:<div align="CENTER"> <i>S</i><sub>A'B'C'D'E'</sub>$\displaystyle \ge$$\displaystyle {\textstyle\frac{1}{2}}$<i>S</i><sub>ABCDE</sub>. </div>
Дан произвольный треугольник<i>ABC</i>и точка<i>X</i>вне его.<i>AM</i>,<i>BN</i>,<i>CQ</i>— медианы треугольника<i>ABC</i>. Доказать, что площадь одного из треугольников<i>XAM</i>,<i>XBN</i>,<i>XCQ</i>равна сумме площадей двух других.