Олимпиадные задачи из источника «1963 год» для 9 класса - сложность 2 с решениями

Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное число нулей, либо бесконечное число девяток.

Доказать, что при нечётном <i>n</i> > 1 уравнение  <i>x<sup>n</sup> + y<sup>n</sup> = z<sup>n</sup></i>  не может иметь решений в целых числах, для которых  <i>x + y</i>  – простое число.

В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6.

В таблицу 8×8 вписаны все целые числа от 1 до 64. Доказать, что при этом найдутся два соседних числа, разность между которыми не меньше 5. (Соседними называются числа, стоящие в клетках, имеющих общую сторону.)

Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

<i>a, b, c</i> – такие три числа, что  <i>abc</i> > 0  и  <i>a + b + c</i> > 0.  Доказать, что  <i>a<sup>n</sup> + b<sup>n</sup> + c<sup>n</sup></i> > 0  при любом натуральном <i>n</i>.

Из любых четырёх точек на плоскости, никакие три из которых не лежат на одной прямой, можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший45<sup><tt>o</tt></sup>. Доказать. (Сравните с<a href="http://www.problems.ru/view_problem_details_new.php?id=78481">задачей 2 для 10 класса</a>.)

<i>a, b, c</i> – любые положительные числа. Доказать, что   <img width="41" height="43" align="MIDDLE" border="0" src="/storage/problem-media/78478/problem_78478_img_2.gif"> + <img width="43" height="51" align="MIDDLE" border="0" src="/storage/problem-media/78478/problem_78478_img_3.gif"> + <img width="43" height="43" align="MIDDLE" border="0" src="/storage/problem-media/78478/problem_78478_img_4.gif"> ≥ <sup>3</sup>/<sub>2</sub>.

Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что найдётся такой член прогрессии, в записи которого участвует цифра 9.

Лист клетчатой бумаги размером 5×<i>n</i> заполнен карточками размером 1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких <i>n</i> это возможно?

На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°.

Решить в целых числах уравнение   <i><sup>xy</sup></i>/<i><sub>z</sub> + <sup>xz</sup></i>/<i><sub>y</sub> + <sup>yz</sup></i>/<i><sub>x</sub></i> = 3.

Даны выпуклый четырёхугольник<i>ABCD</i>площади<i>s</i>и точка<i>M</i>внутри него. Точки<i>P</i>,<i>Q</i>,<i>R</i>,<i>S</i>симметричны точке<i>M</i>относительно середин сторон четырёхугольника<i>ABCD</i>. Найти площадь четырёхугольника<i>PQRS</i>.

<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>  – такие числа, что  <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a<sub>n</sub></i> = 0.  Доказать, что в этом случае справедливо соотношение   <i>S = a</i><sub>1</sub><i>a</i><sub>2</sub> + <i>a</i><sub>1</sub><i>a</i><sub>3</sub> + ... + <i>a</i><sub><i>n</i>–1</sub><i>a<sub>n</sub></i> ≤ 0

(в сумму <i>S</i> входят все возможные произведения <i>a<sub>i</sub>a<sub>j</sub>,...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка