Олимпиадные задачи из источника «1977 год» для 8 класса - сложность 3 с решениями
Существуют ли а) 6, б)15, в) 1000 таких различных натуральных чисел, что для любых двух <i>a</i> и <i>b</i> из них сумма <i>a + b</i> делится на разность <i>a − b</i>?
Найти наименьшее<i>n</i>такое, что любой выпуклый 100-угольник можно получить в виде пересечения<i>n</i>треугольников. Докажите, что для меньших<i>n</i>это можно сделать не с любым выпуклым 100-угольником.