Олимпиадные задачи из источника «1991 год» для 11 класса - сложность 2-3 с решениями

На прямоугольном экране размером <i>m</i>×<i>n</i>, разбитом на единичные клетки, светятся более  (<i>m</i> – 1)(<i>n</i> – 1)  клеток. Если в каком-либо квадрате 2×2 не светятся три клетки, то через некоторое время погаснет и четвёртая. Докажите, что тем не менее на экране всегда будет светиться хотя бы одна клетка.

Функция<i>f</i>(<i>x</i>) при каждом значении  <i>x</i>∈ (− ∞, + ∞)  удовлетворяет равенству  <i>f</i>(<i>x</i>) + (<i>x</i>+ ½)<i>f</i>(1 −<i>x</i>) = 1.   а) Найдите<i>f</i>(0) и<i>f</i>(1).   б) Найдите все такие функции<i>f</i>(<i>x</i>).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка