Олимпиадные задачи из источника «10 класс» - сложность 3 с решениями

На стороне <i>AB</i> треугольника <i>ABC</i> внешним образом построен квадрат с центром <i>O</i>. Точки <i>M</i> и <i>N</i>   середины сторон <i>AC</i> и <i>BC</i> соответственно, а длины этих сторон равны соответственно <i>a</i> и <i>b</i>. Найти максимум суммы  <i>OM + ON</i>,  когда угол <i>ACB</i> меняется.

Дед барона К.Ф.И. фон Мюнхгаузена построил квадратный замок, разделил его на 9 квадратных залов и в центральном разместил арсенал. Отец барона разделил каждый из восьми оставшихся залов на 9 равных квадратных холлов и во всех центральных холлах устроил зимние сады. Сам барон разделил каждый из 64 свободных холлов на 9 равных квадратных комнат и в каждой из центральных комнат устроил бассейн, а остальные сделал жилыми. Барон хвастается, что ему удалось обойти все жилые комнаты, побывав в каждой по одному разу, и вернуться в исходную (в каждой стене между двумя соседними жилыми комнатами проделана дверь). Могут ли слова барона быть правдой?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка