Олимпиадные задачи из источника «11 класс» - сложность 1-3 с решениями
11 класс
НазадВ треугольнике<i> ABC </i>известно, что<i> AA</i>1– медиана,<i> AA</i>2– биссектриса,<i> K </i>– такая точка на<i> AA</i>1, для которой<i> KA</i>2<i> || AC </i>. Докажите, что<i> AA</i>2<i> <img src="/storage/problem-media/108188/problem_108188_img_2.gif"> KC </i>.
Разрезать отрезок [–1, 1] на чёрные и белые отрезки так, чтобы интегралы от любой а) линейной функции; б) квадратного трёхчлена по белым и чёрным отрезкам были равны.
Можно ли рёбра <i>n</i>-угольной призмы раскрасить в три цвета так, чтобы на каждой грани были все три цвета и в каждой вершине сходились рёбра разных цветов, если а) <i>n</i> = 1995; б) <i>n</i> = 1996.
Докажите, что<div align="CENTER"> | <i>x</i>| + | <i>y</i>| + | <i>z</i>|$\displaystyle \le$| <i>x</i> + <i>y</i> - <i>z</i>| + | <i>x</i> - <i>y</i> + <i>z</i>| + |-<i>x</i> + <i>y</i> + <i>z</i>|, </div>где<i>x</i>,<i>y</i>,<i>z</i> — действительные числа.