Олимпиадные задачи из источника «1997 год» для 11 класса - сложность 2-5 с решениями
На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.
Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.
Можно ли разбить правильный тетраэдр с ребром 1 на правильные тетраэдры и октаэдры, длины ребер каждого из которых меньше 1/100?
На доске написаны три функции: <i>f</i><sub>1</sub>(<i>x</i>) = <i>x</i> + <sup>1</sup>/<sub><i>x</i></sub>, <i>f</i><sub>2</sub>(<i>x</i>) = <i>x</i>², <i>f</i><sub>3</sub>(<i>x</i>) = (<i>x</i> – 1)². Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию <sup>1</sup>/<sub><i>x</i></sub>.
Докажите, что если стереть с доски любую из функций <i>f</i&...
Рассмотрим степени пятерки: 1, 5, 25, 125, 625, ... Образуем последовательность их первых цифр: 1, 5, 2, 1, 6, ...
Докажите, что любой кусок этой последовательности, записанный в обратном порядке, встретится в последовательности первых цифр степеней двойки (1, 2, 4, 8, 1, 3, 6, 1, ...).
Даны такие действительные числа <i>a</i><sub>1</sub> ≤ <i>a</i><sub>2</sub> ≤ <i>a</i><sub>3</sub> и <i>b</i><sub>1</sub> ≤ <i>b</i><sub>2</sub> ≤ <i>b</i><sub>3</sub>, что <div align="CENTER"><i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + <i>a</i><sub>3</sub> = <i>b</i><sub>1</sub> + <i>b</i><sub>2</sub> + <i>b</i><sub>3</sub>, <i>a</i><sub>1</sub><i>a</i><sub>2</sub> + <i>a</i><sub>2</sub><i>a</i><s...
Существует ли выпуклое тело, отличное от шара, ортогональные проекции которого на некоторые три попарно перпендикулярные плоскости являются кругами?
Вычислите$\int_0^{\pi /2}(\sin ^2 (\sin x)+ \cos^2(\cos x)) dx$.