Олимпиадные задачи из источника «11 класс» - сложность 4-5 с решениями
11 класс
НазадДокажите, что первые цифры чисел вида 2<sup>2<sup>n</sup></sup> образуют непериодическую последовательность.
Решите в натуральных числах уравнение (1 + <i>n<sup>k</sup></i>)<sup><i>l</i></sup> = 1 + <i>n<sup>m</sup></i>, где <i>l</i> > 1.
На лугу, имеющем форму квадрата, имеется круглая лунка. По лугу прыгает кузнечик. Перед каждым прыжком он выбирает вершину и прыгает по направлению к ней. Длина прыжка равна половине расстояния до этой вершины.
Сможет ли кузнечик попасть в лунку?
Грани правильного октаэдра раскрашены в белый и черный цвет. При этом любые две грани, имеющие общее ребро, покрашены в разные цвета.
Докажите, что для любой точки внутри октаэдра сумма расстояний до плоскостей белых граней равна сумме расстояний до плоскостей черных граней.