Олимпиадные задачи из источника «11 класс» для 10 класса - сложность 2-5 с решениями

По кругу расставлено несколько коробочек. В каждой из них может лежать один или несколько шариков (или она может быть пустой). За один ход разрешается взять все шарики из любой коробочки и разложить их, двигаясь по часовой стрелке, начиная со следующей коробочки, кладя в каждую коробочку по одному шарику.

  а) Докажите, что если на каждом следующем ходе шарики берут из той коробочки, в которую попал последний шарик на предыдущем ходе, то в какой-то момент повторится начальное размещение шариков.

  б) Докажите, что за несколько ходов из любого начального размещения шариков по коробочкам можно получить любое другое.

Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).

Докажите, что не существует многочлена степени не ниже двух с целыми неотрицательными коэффициентами, значение которого при любом простом <i>p</i> является простым числом.

Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами.

Верно ли, что её двадцатый член также является натуральным числом?

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка