Олимпиадные задачи по математике
B ряд лежат 1000 конфет. Сначала Вася съел девятую конфету слева, после чего съедал каждую седьмую конфету, двигаясь вправо. После этого Петя съел седьмую слева из оставшихся конфет, а затем съедал каждую девятую из них, также двигаясь вправо. Сколько конфет после этого осталось?
Вася выписал все слова (не обязательно осмысленные), которые получаются вычеркиванием ровно двух букв из слова <i>ИНТЕГРИРОВАНИЕ</i>, а Маша сделала то же самое со словом <i>СУПЕРКОМПЬЮТЕР</i>. У кого получилось больше слов?
На каждом из двух рукавов реки за километр до их слияния стоит по пристани, а ещё одна пристань стоит в 2 километрах после слияния (см. рисунок). <div align="center"><img src="/storage/problem-media/116611/problem_116611_img_2.gif"></div>Лодка добралась от одной из пристаней до другой (неизвестно, какой) за 30 минут, от другой до третьей за 18 минут. За сколько минут она может добраться от третьей пристани до первой? (Скорость течения реки постоянна и одинакова во всех её частях. Собственная скорость лодки также постоянна.)
Существует ли выпуклый многоугольник, у которого каждая сторона равна какой-нибудь диагонали, а каждая диагональ– какой-нибудь стороне?
На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке?
По кругу расставлено несколько коробочек. В каждой из них может лежать один или несколько шариков (или она может быть пустой). За один ход разрешается взять все шарики из любой коробочки и разложить их, двигаясь по часовой стрелке, начиная со следующей коробочки, кладя в каждую коробочку по одному шарику.
а) Докажите, что если на каждом следующем ходе шарики берут из той коробочки, в которую попал последний шарик на предыдущем ходе, то в какой-то момент повторится начальное размещение шариков.
б) Докажите, что за несколько ходов из любого начального размещения шариков по коробочкам можно получить любое другое.
Для постройки типового дома не хватало места. Архитектор изменил проект: убрал два подъезда и добавил три этажа. При этом количество квартир увеличилось. Он обрадовался и решил убрать ещё два подъезда и добавить ещё три этажа.
Могло ли при этом квартир стать даже меньше, чем в типовом проекте? (В каждом подъезде одинаковое число этажей и на всех этажах во всех подъездах одинаковое число квартир.)
Найдутся ли такие функции <i>p</i>(<i>x</i>) и <i>q</i>(<i>x</i>), что <i>p</i>(<i>x</i>) – чётная функция, а <i>p</i>(<i>q</i>(<i>x</i>)) – нечётная функция (отличная от тождественно нулевой)?
На доске нарисован правильный многоугольник. Володя хочет отметить <i>k</i> точек на его периметре так, чтобы не существовало другого правильного многоугольника (не обязательно с тем же числом сторон), также содержащего отмеченные точки на своем периметре.
Найдите наименьшее <i>k</i>, достаточное для любого исходного многоугольника.