Олимпиадные задачи из источника «2007 год» - сложность 4 с решениями
В четырёхугольнике <i>ABCD</i> стороны <i>AB, BC</i> и <i>CD</i> равны, <i>M</i> – середина стороны <i>AD</i>. Известно, что ∠<i>BMC</i> = 90°.
Найдите угол между диагоналями четырёхугольника <i>ABCD</i>.
Стороны треугольника <i>ABC</i> видны из точки <i>T</i> под углами 120°. Докажите, что прямые, симметричные прямым <i>AT, BT</i> и <i>CT</i> относительно прямых <i>BC, CA</i> и <i>AB</i> соответственно, пересекаются в одной точке.
В однокруговом футбольном турнире играли  <i>n</i> > 4 команд. За победу давалось 3 очка, за ничью 1, за проигрыш 0. Оказалось, что все команды набрали поровну очков.
а) Докажите, что найдутся четыре команды, имеющие поровну побед, поровну ничьих и поровну поражений.
б) При каком наименьшем <i>n</i> могут не найтись пять таких команд?
Точки<i> A' </i>,<i> B' </i>и<i> C' </i>"– середины сторон<i> BC </i>,<i> CA </i>и<i> AB </i>треугольника<i> ABC </i>соответственно, а<i> BH </i>"– его высота. Докажите, что если описанные около треугольников<i> AHC' </i>и<i> CHA' </i>окружности проходят через точку<i> M </i>, отличную от<i> H </i>, то<i> <img src="/storage/problem-media/109488/problem_109488_img_2.gif"> ABM=<img src="/storage/problem-media/109488/problem_109488_img_2.gif"> CBB' </i>.