Олимпиадные задачи из источника «2018 год» для 6-10 класса - сложность 3 с решениями

Пусть $x$ и $y$ — пятизначные числа, в десятичной записи которых использованы все десять цифр ровно по одному разу. Найдите наибольшее возможное значение $x$, если $\operatorname{tg} x^\circ- \operatorname{tg} y^\circ=1+\operatorname{tg} x^\circ \operatorname{tg} y^\circ$ ($x^\circ$ обозначает угол в $x$ градусов).

На доску $2018\times 2018$ клеток положили без наложений некоторое количество доминошек, каждая из которых закрывает ровно две клетки. Оказалось, что ни у каких двух доминошек нет общей целой стороны, т. е. никакие две не образуют ни квадрат $2\times 2$, ни прямоугольник $4\times 1$. Может ли при этом быть покрыто более 99% всех клеток доски?

Можно ли представить число $11^{2018}$ в виде суммы кубов двух натуральных чисел?

Существуют ли такое натуральное $n$ и такой многочлен $P(x)$ степени $n$, имеющий $n$ различных действительных корней, что при всех действительных $x$ выполнено равенство а) $P(x)P(x+1)=P(x^2)$; б) $P(x)P(x+1)=P(x^2+1)$?

Имеются одна треугольная и одна четырёхугольная пирамиды, все рёбра которых равны 1. Покажите, как разрезать их на несколько частей и склеить из этих частей куб (без пустот и щелей, все части должны использоваться).

Карлсон ест треугольный торт. Он режет торт по биссектрисе одного из углов, съедает одну из частей, а с другой повторяет ту же операцию. Если Карлсон съест больше половины торта, он станет не в меру упитанным мужчиной в самом расцвете сил. Докажите, что рано или поздно это произойдёт.

Дан выпуклый четырёхугольник <i>ABCD</i> с попарно непараллельными сторонами. На стороне <i>AD</i> выбирается произвольная точка <i>P</i>, отличная от <i>A</i> и <i>D</i>. Описанные окружности треугольников <i>ABP</i> и <i>CDP</i> вторично пересекаются в точке <i>Q</i>. Докажите, что прямая <i>PQ</i> проходит через фиксированную точку, не зависящую от выбора точки <i>P</i>.

Докажите, что для любых натуральных <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub><i>k</i></sub> таких, что <img align="absmiddle" src="/storage/problem-media/66474/problem_66474_img_2.png">, у уравнения <img align="absmiddle" src="/storage/problem-media/66474/problem_66474_img_3.png">не больше чем <i>a</i><sub>1</sub><i>a</i><sub>2</sub>...<i>a</i><sub><i>k</i></sub> решений в натуральных числах. ([<i>x</i>] – целая часть числа <i>x</i>, т. е. наибольшее целое число, не превосходящее <i>x</i>.)

Андрей Степанович каждый день выпивает столько капель валерьянки, сколько в этом месяце уже было солнечных дней (включая текущий день). Иван Петрович каждый пасмурный день выпивает количество капель валерьянки, равное номеру дня в месяце, а в солнечные дни не пьет. Докажите, что если в апреле ровно половина дней будет пасмурные, а другая половина – солнечные, то Андрей Степанович и Иван Петрович выпьют за месяц поровну валерьянки.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка