Олимпиадные задачи из источника «2021 год» для 5-9 класса - сложность 2 с решениями

Найдите наименьшее натуральное число $N>9$, которое не делится на 7, но если вместо любой его цифры поставить семерку, то получится число, которое делится на 7.

В остроугольном треугольнике $ABC$ точка $O$ – центр описанной окружности. Точка $B_1$ симметрична точке $B$ относительно стороны $AC$. Прямые $AO$ и $B_1C$ пересекаются в точке $K$. Докажите, что луч $KA$ является биссектрисой угла $BKB_1$.

Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$.

Дана равнобокая трапеция, сумма боковых сторон которой равна большему основанию. Докажите, что острый угол между диагоналями не больше чем $60^\circ$.

На доске записано натуральное число. Если у него стереть последнюю цифру (в разряде единиц), то останется ненулевое число, которое будет делиться на 20, а если первую — то на 21. Какое наименьшее число может быть записано на доске, если его вторая цифра не равна 0?

<img align="right" hspace="10" width="169.5" src="/storage/problem-media/66587/problem_66587_img_2.png">В узлах сетки клетчатого прямоугольника $4 \times 5$ расположены $30$ лампочек, изначально все они погашены. За ход разрешается провести любую прямую, не задевающую лампочек (размерами лампочек следует пренебречь, считая их точками), такую, что с какой-то одной стороны от нее ни одна лампочка не горит, и зажечь все лампочки по эту сторону от прямой. Каждым ходом нужно зажигать хотя бы одну лампочку. Можно ли зажечь все лампочки ровно за четыре хода?

Клетки бумажного квадрата $8 \times 8$ раскрашены в два цвета. Докажите, что Арсений может вырезать из него по линиям сетки два квадрата $2 \times 2$, не имеющих общих клеток, раскраски которых совпадают. (Раскраски, отличающиеся поворотом, считаются разными.)

Положительные числа $a$ и $b$ таковы, что $a - b = a / b$. Что больше, $a + b$ или $a b$?

В правильном пятиугольнике $ABCDE$ отмечена точка $F$ – середина $CD$. Серединный перпендикуляр к $AF$ пересекает $CE$ в точке $H$. Докажите, что прямая $AH$ перпендикулярна прямой $CE$.

В комнате находится несколько детей и куча из 2021 конфеты. Каждый из них по очереди подходит к куче, делит количество конфет в ней на количество детей в комнате (включая себя), округляет (если получилось нецелое число), забирает полученное число конфет и покидает комнату. При этом мальчики округляют вверх, а девочки – вниз. Докажите, что суммарное количество конфет у мальчиков, когда все выйдут из комнаты, не зависит от порядка детей в очереди.

Митя купил на день рождения круглый торт диаметром 36 сантиметров и 13 тоненьких свечек. Мите не нравится, когда свечки стоят слишком близко, поэтому он хочет поставить их на расстоянии не меньше 10 сантиметров друг от друга. Поместятся ли все свечки на торте?

Барон Мюнхгаузен утверждает, что к любому двузначному числу можно справа приписать еще две цифры так, чтобы получился полный квадрат (к примеру, если задано число $10$, то дописываем $24$ и получаем $1024 = 32^2$). Прав ли барон?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка