Олимпиадные задачи из источника «2022 год» - сложность 2 с решениями
Таня последовательно выписывала числа вида ${n^7-1}$ для натуральных чисел $n=2,3,\ldots$ и заметила, что при $n=8$ полученное число делится на 337. А при каком наименьшем $n\gt 1$ она получит число, делящееся на 2022?
В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.
В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12- угольника?
Волейбольный чемпионат с участием 16 команд проходил в один круг (каждая команда играла с каждой ровно один раз, ничьих в волейболе не бывает). Оказалось, что какие-то две команды одержали одинаковое число побед. Докажите, что найдутся три команды, которые выиграли друг у друга по кругу (то есть $A$ выиграла у $B$, $B$ выиграла у $C$, а $C$ выиграла у $A$).
Некоторые неотрицательные числа $a$, $b$, $c$ удовлетворяют равенству $a+b+c=2\sqrt{abc}$. Докажите, что $bc\geqslant b+c$.
В остроугольном треугольнике $ABC$ проведена биссектриса $AL$. На продолжении отрезка $LA$ за точку $A$ выбрана точка $K$ так, что $AK = AL$. Описанные окружности треугольников $BLK$ и $CLK$ пересекают отрезки $AC$ и $AB$ в точках $P$ и $Q$ соответственно. Докажите, что прямые $PQ$ и $BC$ параллельны.
В декартовой системе координат (с одинаковым масштабом по осям $x$ и $y$) нарисовали график показательной функции $y=3^x$. Затем ось $y$ и все отметки на оси $x$ стёрли. Остались лишь график функции и ось $x$ без масштаба и отметки 0. Каким образом с помощью циркуля и линейки можно восстановить ось $y$?
В коллекции Алика есть два типа предметов: значки и браслеты. Значков больше, чем браслетов. Алик заметил, что если он увеличит количество браслетов в некоторое (не обязательно целое) число раз, не изменив количества значков, то в его коллекции будет 100 предметов. А если, наоборот, он увеличит в это же число раз первоначальное количество значков, оставив прежним количество браслетов, то у него будет 101 предмет. Сколько значков и сколько браслетов могло быть в коллекции Алика?
Среди любых пяти узлов обычной клетчатой бумаги обязательно найдутся два, середина отрезка между которыми – тоже узел клетчатой бумаги. А какое минимальное количество узлов сетки из правильных шестиугольников необходимо взять, чтобы среди них обязательно нашлось два, середина отрезка между которыми – тоже узел этой сетки?
Точки $M$ и $N$ – середины сторон $AB$ и $AC$ треугольника $ABC$. Касательная $\ell$ к описанной окружности треугольника $ABC$ в точке $A$ пересекает прямую $BC$ в точке $K$. Докажите, что описанная окружность треугольника $MKN$ касается $\ell$.
Коллекция Саши состоит из монет и наклеек, причём монет меньше, чем наклеек, но хотя бы одна есть. Саша выбрал некоторое положительное число $t>1$ (не обязательно целое). Если он увеличит количество монет в $t$ раз, не меняя количества наклеек, то в его коллекции будет $100$ предметов. Если вместо этого он увеличит количество наклеек в $t$ раз, не меняя количества монет, то у него будет $101$ предмет. Сколько наклеек могло быть у Саши? Найдите все возможные ответы и докажите, что других нет.
Прямоугольники $ABCD$ и $DEFG$ расположены так, что точка $D$ лежит на отрезке $BF$, а точки $B$, $C$, $E$, $F$ лежат на одной окружности (см. рисунок). Докажите, что $\angle ACE = \angle CEG$.<img src="/storage/problem-media/67019/problem_67019_img_2.png">
У каждого из девяти натуральных чисел $n, 2n, 3n,\ldots,9n$ выписали первую слева цифру. Может ли при некотором натуральном $n$ среди девяти выписанных цифр быть не более четырёх различных?
У входа на рынок есть двухчашечные весы без гирек, которыми каждый может воспользоваться по 2 раза в день. У торговца Александра есть 3 неотличимые внешне монеты весом 9, 10 и 11 грамм.— Как жаль, что я не могу за 2 взвешивания разобраться, какая из моих монет сколько весит!
— Да! — поддакнул его сосед Борис. — У меня совершенно та же ситуация — тоже 3 неотличимые на вид монеты весом 9, 10 и 11 грамм!
Докажите, что если они объединят усилия, то за отведённые им 4 взвешивания определят веса всех шести монет.
На стороне правильного восьмиугольника во внешнюю сторону построен квадрат. В восьмиугольнике проведены две диагонали, пересекающиеся в точке $B$ (см. рисунок). Найдите величину угла $ABC$.<i>(Многоугольник называется правильным, если все его стороны равны и все его углы равны.)</i><img src="/storage/problem-media/67014/problem_67014_img_2.png">
Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность $n - p$ также является простым числом.
Незнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение $\sqrt{(2+20):2}$. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30?