Олимпиадные задачи из источника «7 класс»

<i>KLMN</i> – выпуклый четырёхугольник, в котором равны углы <i>K</i> и <i>L</i>. Серединные перпендикуляры к сторонам <i>KN</i> и <i>LM</i> пересекаются на стороне <i>KL</i>.

Докажите, что в этом четырёхугольнике равны диагонали.

Вася задумал двузначное число и сообщил Пете произведение цифр в записи этого числа, а Саше – сумму этих цифр. Между мальчиками состоялся такой диалог:

  Петя: "Я угадаю задуманное число с трёх попыток, но двух мне может не хватить".

  Саша: "Если так, то мне для этого хватит четырёх попыток, но трёх может не хватить".

Какое число было сообщено Саше?

В турнире по волейболу каждая команда встречалась с каждой по одному разу. Каждая встреча состояла из нескольких партий – до трёх побед одной из команд. Если встреча заканчивалась со счётом  3 : 0  или  3 : 1,  то выигравшая команда получала 3 очка, а проигравшая – 0. Если же счёт партий был

3 : 2,  то победитель получал 2 очка, а побеждённый – 1 очко. По итогам турнира оказалось, что команда "Хитрецы" набрала больше всех очков, а команда "Простаки" – меньше всех. Но "Хитрецы" выиграли меньше встреч, чем проиграли, а у "Простаков" наоборот, победных встреч оказалось больше, чем проигранных. При каком наименьшем количестве команд такое возможно?

У Саши было четыре раскрашенных кубика. Расставляя их по-разному, он по очереди сфотографировал три фигуры (рис. слева). Затем Саша сложил из них параллелепипед размером 2×2×1 и сделал его черно-белое фото (рис. справа). Все видимые на этом фото грани кубиков одного и того же цвета. Какого? <div align="center"><img src="/storage/problem-media/66068/problem_66068_img_2.gif"></div>

На кружок пришли четыре мальчика из 7А и четыре – из 7Б: три Лёши, три Вани и два Артёма.

Могло ли оказаться так, что у каждого из них есть хотя бы один тёзка-одноклассник, пришедший на кружок?

У Вики есть четыре фигурки, у Алины есть квадрат, а у Полины есть квадрат другого размера. Объединившись, Алина и Вика могут сложить квадрат, используя все свои пять фигурок. Может ли оказаться так, что Полина и Вика также смогут сложить квадрат, используя все свои пять фигурок? (Квадраты складываются без просветов и наложений.)

В каждой клетке доски размером 5×5 стоит крестик или нолик, причём никакие три крестика не стоят подряд ни по горизонтали, ни по вертикали, ни по диагонали. Какое наибольшее количество крестиков может быть на доске?

Петров забронировал квартиру в доме-новостройке, в котором пять одинаковых подъездов. Изначально подъезды нумеровались слева направо, и квартира Петрова имела номер 636. Потом застройщик поменял нумерацию на противоположную (справа налево, см. рисунок). Тогда квартира Петрова стала иметь номер 242. Сколько квартир в доме? (Порядок нумерации квартир внутри подъезда не изменялся.) <div align="center"><img src="/storage/problem-media/66061/problem_66061_img_2.gif"></div>

В Стране дураков ходят монеты в 1, 2, 3, ..., 19, 20 сольдо (других нет). У Буратино была одна монета. Он купил мороженое и получил одну монету сдачи. Снова купил такое же мороженое и получил сдачу тремя монетами разного достоинства. Буратино хотел купить третье такое же мороженое, но денег не хватило. Сколько стоит мороженое?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка