Олимпиадные задачи из источника «04 (2006 год)» - сложность 2 с решениями
04 (2006 год)
НазадЧетырёхугольник <i>ABCD</i> вписан в окружность, центр <i>O</i> которой лежит внутри него. Kасательные к окружности в точках <i>A</i> и <i>C</i> и прямая, симметричная <i>BD</i> относительно точки <i>O</i>, пересекаются в одной точке. Докажите, что произведения расстояний от <i>O</i> до противоположных сторон четырёхугольника равны.
Hа плоскости даны две окружности <i>C</i><sub>1</sub> и <i>C</i><sub>2</sub> с центрами <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> и радиусами 2<i>R</i> и <i>R</i> соответственно (<i>O</i><sub>1</sub><i>O</i><sub>2</sub> <i>></i> 3<i>R</i>). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на <i>C</i><sub>1</sub>, а две другие — на <i>C</i><sub>2</sub>.
Шесть отрезков таковы, что из любых трех можно составить треугольник. Bерно ли, что из этих отрезков можно составить тетраэдр?
Hа сторонах <i>AB</i>, <i>BC</i> и <i>AC</i> треугольника <i>ABC</i> выбраны точки <i>C</i>', <i>A</i>' и <i>B</i>' соответственно так, что угол <i>A</i>'<i>C</i>'<i>B</i>' — прямой. Докажите, что отрезок <i>A</i>'<i>B</i>' длиннее диаметра вписанной окружности треугольника <i>ABC</i>.
Oпределите отношение сторон прямоугольника, описанного около уголка из пяти клеток.
Диагонали вписанного четырехугольника <i>ABCD</i> пересекаются в точке <i>K</i>.
Докажите, что касательная в точке <i>K</i> к описанной окружности треугольника <i>ABK</i>, параллельна <i>CD</i>.