Олимпиадные задачи из источника «13 турнир (1991/1992 год)» для 10 класса - сложность 2-4 с решениями
13 турнир (1991/1992 год)
НазадПусть <i>n</i> и <i>b</i> – натуральные числа. Через <i>V</i>(<i>n, b</i>) обозначим число разложений <i>n</i> на сомножители, каждый из которых больше <i>b</i> (например:
36 = 6·6 = 4·9 = 3·3·4 = 3·12, так что <i>V</i>(36, 2) = 5). Докажите, что <i>V</i>(<i>n, b</i>) < <sup><i>n</i></sup>/<sub><i>b</i></sub>.
Даны три треугольника: <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>B</i><sub>1</sub><i>B</i><sub>2</sub><i>B</i><sub>3</sub>, <i>C</i><sub>1</sub><i>C</i><sub>2</sub><i>C</i><sub>3</sub>. Известно, что их центры тяжести (точки пересечения медиан) лежат на одной прямой, а никакие три из девяти вершин этих треугольников не лежат на одной прямой. Рассматриваются 27 треугольников вида <i>A<sub>i</sub>B<sub>j</sub>C<sub>k</sub></i>, где <i>i, j, k</i> независимо пробегают значения 1, 2, 3. Докажите, что...
Внутри окружности радиуса 1 расположена замкнутая ломаная (самопересекающаяся), содержащая 51 звено, причём известно, что длина каждого звена равна <img align="absmiddle" src="/storage/problem-media/98138/problem_98138_img_2.gif"> . Для каждого угла этой ломаной рассмотрим треугольник, двумя сторонами которого служат звенья ломаной, образующие этот угол (таких треугольников всего 51). Докажите, что сумма площадей этих треугольников не меньше, чем утроенная площадь правильного треугольника, вписанного в окружность.
Пусть <i>m, n</i> и <i>k</i> – натуральные числа, причём <i>m > n</i>. Какое из двух чисел больше: <img align="absmiddle" src="/storage/problem-media/98129/problem_98129_img_2.gif"> или <img align="absmiddle" src="/storage/problem-media/98129/problem_98129_img_3.gif"> (В каждом выражении <i>k</i> знаков квадратного корня, <i>m</i> и <i>n</i> чередуются.)
Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
а) Докажите, что число её членов меньше 100.
б) Приведите пример такой прогрессии с 72 членами.
в) Докажите, что число членов всякой такой прогрессии не больше 72.
Пусть <i>M</i> – центр тяжести (точка пересечения медиан) треугольника <i>ABC</i>. При повороте на 120° вокруг точки <i>M</i> точка <i>B</i> переходит в точку <i>P</i>, при повороте на 240° вокруг точки <i>M</i> (в том же направлении) точка <i>C</i> переходит в точку <i>Q</i>. Докажите, что либо треугольник <i>APQ</i> – правильный, либо точки <i>A, P, Q</i> совпадают.
Можно ли разрезать плоскость на многоугольники, каждый из которых переходит в себя при повороте на <sup>360°</sup>/<sub>7</sub> вокруг некоторой точки и все стороны которых больше 1 см?
Последовательность {<i>a<sub>n</sub></i>} определяется правилами: <i>a</i><sub>0</sub> = 9, <img align="absmiddle" src="/storage/problem-media/35392/problem_35392_img_2.gif"> .
Докажите, что в десятичной записи числа <i>a</i><sub>10</sub> содержится не менее 1000 девяток.