Олимпиадные задачи из источника «весенний тур, тренировочный вариант, 10-11 класс» для 10-11 класса - сложность 2-4 с решениями
весенний тур, тренировочный вариант, 10-11 класс
Назад10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие. Разрешены две операции:
а) перевернуть четыре фишки, стоящие подряд;
  б) перевернуть четыре фишки, расположенные так: ××0×× (× – фишка, входящая в четвёрку, 0 – не входящая).
Удастся ли, используя несколько раз разрешённые операции, перевернуть все фишки синей стороной вверх?
Последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, ... такова, что для каждого <i>n</i> уравнение <i>a</i><sub><i>n</i>+2</sub><i>x</i>² + <i>a</i><sub><i>n</i>+1</sub><i>x</i> + <i>a<sub>n</sub></i> = 0 имеет действительный корень. Может ли число членов этой последовательности быть
а) равным 10;
б) бесконечным?