Олимпиадные задачи из источника «17 турнир (1995/1996 год)» для 7-10 класса - сложность 3 с решениями
17 турнир (1995/1996 год)
НазадВ плоскости выпуклого четырёхугольника <i>ABCD</i> расположена точка <i>P</i>. Проведены биссектрисы <i>PK,PL, PM</i> и <i>PN</i> треугольников <i>APB, BPC, CPD</i> и <i>DPA</i> соответственно.
а) Найдите хотя бы одну такую точку <i>P</i>, для которой четырёхугольник <i>KLMN</i> – параллелограмм.
б) Найдите все такие точки.
Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника.
На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад?
В углу шахматной доски размером <i>m×n</i> полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть?
a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.
б) Если каждую задачу решили четыре ученика, то может оказаться, что таких двоих не найдётся.
Докажите, что существует бесконечно много таких троек чисел <i>n</i> – 1, <i>n</i>, <i>n</i> + 1, что:
a) <i>n</i> представимо в виде суммы двух квадратов натуральных (целых положительных) чисел, а <i>n</i> – 1 и <i>n</i> + 1 – нет;
б) каждое из трёх чисел представимо в виде суммы двух квадратов натуральных чисел.
В равнобедренном треугольнике <i>ABC</i> (<i>AB = AC</i>) угол <i>A</i> равен α. На стороне <i>AB</i> взята точка <i>D</i> так, что <i>AD = <sup>AB</sup></i>/<sub><i>n</i></sub>. Найдите сумму <i>n</i> – 1 углов, под которыми виден отрезок <i>AD</i> из точек, делящих сторону <i>BC</i> на <i>n</i> равных частей:
а) при <i>n</i> = 3;
б) при произвольном <i>n</i>.
Кузнечик вначале сидит в точке <i>M</i> плоскости <i>Oxy</i> вне квадрата 0 ≤ <i>x</i> ≤ 1, 0 ≤ <i>y</i> ≤ 1 (координаты <i>M</i> – нецелые, расстояние от <i>M</i> до центра квадрата равно <i>d</i>). Кузнечик прыгает в точку, симметричную <i>M</i> относительно самой правой (с точки зрения кузнечика) вершины квадрата. Докажите, что за несколько таких прыжков кузнечик не сможет удалиться от центра квадрата более чем на 10<i>d</i>.
В равностороннем треугольнике <i>ABC</i> на стороне <i>AB</i> взята точка <i>D</i> так, что <i>AD = <sup>AB</sup></i>/<sub><i>n</i></sub>.
Докажите,что сумма <i>n</i> – 1 углов, под которыми виден отрезок <i>AD</i> из точек, делящих сторону <i>BC</i> на <i>n</i> равных частей, равна 30°:
а) при <i>n</i> = 3;
б) при произвольном <i>n</i>.
Существует ли возрастающая арифметическая прогрессия
а) из 11,
б) из 10000,
в) из бесконечного числа натуральных чисел,
такая что последовательность сумм цифр её членов – также возрастающая арифметическая прогрессия?
Кресла для зрителей вдоль лыжной трассы занумерованы по порядку: 1, 2, 3, ..., 1000. Кассирша продала <i>n</i> билетов на все первые 100 мест, но <i>n</i> больше 100, так как на некоторые места она продала больше одного билета (при этом <i>n</i> < 1000). Зрители входят на трассу по одному.Каждый, подойдя к своему месту, занимает его, если оно свободно, если же занято, говорит "Ох!", идёт в сторону роста номеров до первого свободного места и занимает его. Каждый раз, обнаружив очередное место занятым, он говорит "Ох!". Докажите, что число "охов" не зависит от того, в каком порядке зрители выходят на трассу.
Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом только по целым сторонам, так, что общая сторона двух треугольников всегда служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.
Дано <i>n</i> чисел, <i>p</i> – их произведение. Разность между <i>p</i> и каждым из этих чисел – нечётное число. Докажите, что все данные <i>n</i> чисел иррациональны.
Есть доска 1×1000, вначале пустая, и куча из <i>n</i> фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую <i>серию</i> фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
а) Докажите, что при <i>n</i> = 98 первый всегда может выиграть.
б) При каком наибольшем <i>n</i> первый всегда может выиграть?
а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
б) А три таких семиугольника?
В компанию из <i>n</i> человек пришёл журналист. Ему известно, что в этой компании есть человек <i>Z</i>, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?"
а) Может ли журналист установить, кто из компании есть <i>Z</i>, задав менее <i>n</i> вопросов?
б) Найдите наименьшее количество вопросов, достаточное для того, чтобы наверняка найти <i>Z</i>, и докажите, что меньшим числом вопросов обойтись нельзя.
(Все отвечают на вопросы правдиво. Одному человеку можно задавать несколько вопросов.)