Олимпиадные задачи из источника «осенний тур, тренировочный вариант, 8-9 класс» для 3-10 класса - сложность 1-2 с решениями
осенний тур, тренировочный вариант, 8-9 класс
НазадВ выпуклом семиугольнике <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub><i>A</i><sub>5</sub><i>A</i><sub>6</sub><i>A</i><sub>7</sub> диагонали <i>A</i><sub>1</sub><i>A</i><sub>3</sub>, <i>A</i><sub>2</sub><i>A</i><sub>4</sub>, <i>A</i><sub>3</sub><i>A</i><sub>5</sub>, <i>A</i><sub>4</sub><i>A</i><sub>6</sub>, <i>A</i><sub>5</sub><i>A</i><sub>7</sub>, <i&...
Каждая грань прямоугольного параллелепипеда 3×4×5 разделена на единичные квадратики. Можно ли вписать во все квадратики по числу так, чтобы сумма чисел в каждом клетчатом кольце ширины 1, опоясывающем параллелепипед, равнялась 120?