Олимпиадные задачи из источника «25 турнир (2003/2004 год)»
25 турнир (2003/2004 год)
НазадДан треугольник <i>ABC</i>. В нём <i>H</i> – точка пересечения высот, <i>I</i> – центр вписанной окружности, <i>O</i> – центр описанной окружности, <i>K</i> – точка касания вписанной окружности со стороной <i>BC</i>. Известно, что отрезки <i>IO || BC</i>. Докажите, что отрезки <i>AO || HK</i>.
Дан квадрат, внутри которого лежит точка <i>O</i>. Докажите, что сумма углов <i>OAB, OBC, OCD</i> и <i>ODA</i> отличается от 180° не больше чем на 45°.
На сторонах единичного квадрата как на гипотенузах построены во внешнюю сторону прямоугольные треугольники. Пусть <i>A, B, C</i> и <i>D</i> – вершины их прямых углов, а <i>O</i><sub>1</sub>, <i>O</i><sub>2</sub>, <i>O</i><sub>3</sub> и <i>O</i><sub>4</sub> – центры вписанных окружностей этих треугольников. Докажите, что
а) площадь четырёхугольника <i>ABCD</i> не превосходит 2;
б) площадь четырёхугольника <i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>O</i><sub>3</sub><i>O</i><sub>4</sub> не превосходит 1.
В выпуклом семиугольнике <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub><i>A</i><sub>5</sub><i>A</i><sub>6</sub><i>A</i><sub>7</sub> диагонали <i>A</i><sub>1</sub><i>A</i><sub>3</sub>, <i>A</i><sub>2</sub><i>A</i><sub>4</sub>, <i>A</i><sub>3</sub><i>A</i><sub>5</sub>, <i>A</i><sub>4</sub><i>A</i><sub>6</sub>, <i>A</i><sub>5</sub><i>A</i><sub>7</sub>, <i&...
Арифметическая прогрессия состоит из целых чисел, а её сумма – степень двойки.
Докажите, что количество членов прогрессии тоже степень двойки.
Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины <i>A</i> с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину <i>A</i>.
Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на <i>n</i>%, где <i>n</i> – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли <i>n</i>, для которого курс акций может дважды принять одно и то же значение?
Каждая грань прямоугольного параллелепипеда 3×4×5 разделена на единичные квадратики. Можно ли вписать во все квадратики по числу так, чтобы сумма чисел в каждом клетчатом кольце ширины 1, опоясывающем параллелепипед, равнялась 120?
На плоскости даны парабола <i>y = x</i>² и окружность, имеющие ровно две общие точки: <i>A</i> и <i>B</i>. Оказалось, что касательные к окружности и параболе в точке <i>A</i> совпадают. Обязательно ли тогда касательные к окружности и параболе в точке <i>B</i> также совпадают?
Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь.
Докажите, что эта плоскость параллельна либо одной из граней, либо двум скрещивающимся ребрам пирамиды.
Имеется бильярдный стол в виде многоугольника (не обязательно выпуклого), у которого все углы составляют целое число градусов, а угол <i>A</i> – в точности 1°. В вершинах находятся точечные лузы, попав в которые шар проваливается. Из вершины <i>A</i> вылетает точечный шар и движется внутри многоугольника, отражаясь от сторон по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину <i>A</i>.
Первоначально на доске написано число 2004!. Два игрока ходят по очереди. Игрок в свой ход вычитает из написанного числа какое-нибудь натуральное число, которое делится не более чем на 20 различных простых чисел (так, чтобы разность была неотрицательна), записывает на доске эту разность, а старое число стирает. Выигрывает тот, кто получит 0. Кто из играющих – начинающий или его соперник – может гарантировать себе победу, и как ему следует играть?
Известно, что среди членов некоторой арифметической прогрессии <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>a</i><sub>4</sub>, ... есть числа <img align="absmiddle" src="/storage/problem-media/65407/problem_65407_img_2.gif">
Докажите,что эта прогрессия состоит из целых чисел.
Периметр выпуклого четырёхугольника равен 2004, одна из диагоналей равна 1001. Может ли вторая диагональ быть равна а) 1; б) 2; в) 1001?
Звенья <i>AB, BC</i> и <i>CD</i> ломаной <i>ABCD</i> равны по длине и касаются некоторой окружности.
Доказать, что точка <i>K</i> касания этой окружности со звеном <i>BC</i>, её центр <i>O</i> и точка пересечения прямых <i>AC</i> и <i>BD</i> лежат на одной прямой.
Два десятизначных числа назовем <i>соседними</i>, если они различаются только одной цифрой в каком-то из разрядов (например, 1234567890 и 1234507890 соседние). Какое наибольшее количество десятизначных чисел можно выписать так, чтобы среди них не было соседних?
К натуральному числу <i>a</i> > 1 приписали это же число и получили число <i>b</i>, кратное <i>a</i>². Найдите все возможные значения числа <sup><i>b</i></sup>/<sub><i>a</i>². </sub>
а) Есть три одинаковых больших сосуда. В одном – 3 л сиропа, в другом – 20 л воды, третий – пустой. Можно выливать из одного сосуда всю жидкость в другой или в раковину. Можно выбрать два сосуда и доливать в один из них из третьего, пока уровни жидкости в выбранных сосудах не сравняются. Как получить 10 л разбавленного 30%-го сиропа? б) То же, но воды – <i>N</i> л. При каких целых <i>N</i> можно получить 10 л разбавленного 30%-го сиропа?
Сумма <i>n</i> последовательных натуральных чисел – простое число. Найдите все <i>n</i>, при которых это возможно.
Какое наименьшее число клеток надо отметить на доске 15×15 так, чтобы слон с любой клетки доски бил не менее двух отмеченных клеток? (Слон бьёт и ту клетку, где стоит.)
а) В таблице <i>m</i>×<i>n</i> расставлены знаки "+" и "–". За один ход разрешается поменять знаки на противоположные в любой строке или столбце. Докажите, что если таблица такими действиями не приводится к таблице из одних плюсов, то в ней есть квадрат 2×2, который тоже не приводится.б) В таблице <i>m</i>×<i>n</i> расставлены знаки "+" и "–". За один ход разрешается поменять знаки на противоположные в любой строке или столбце или на любой диагонали (угловые клетки тоже считаются диагоналями). Докажите, что если таблица такими действиями не приводится к таблице из одних плюсов, то в ней есть квадрат 4×4, который тоже не приводится.
У тетраэдра <i>ABCD</i> сумма площадей двух граней (с общим ребром <i>AB</i>) равна сумме площадей оставшихся граней (с общим ребром <i>CD</i>). Докажите, что середины рёбер <i>BC, AD, AC</i> и <i>BD</i> лежат в одной плоскости, причём эта плоскость содержит центр сферы, вписанной в тетраэдр <i>ABCD</i>.
В треугольнике <i>ABC</i> биссектриса <i>AL</i>, серединный перпендикуляр к стороне <i>AB</i> и высота <i>BK</i> пересекаются в одной точке. Докажите, что биссектриса <i>AL</i>, серединный перпендикуляр к <i>AC</i> и высота <i>CH</i>, также пересекаются в одной точке.
Докажите, что любое натуральное число можно представить в виде 3<sup><i>u</i><sub>1</sub></sup>2<sup><i>v</i><sub>1</sub></sup> + 3<sup><i>u</i><sub>2</sub></sup>2<sup><i>v</i><sub>2</sub></sup> + ... + 3<sup><i>u<sub>k</sub></i></sup>2<sup><i>v<sub>k</sub></i></sup>, где <i>u</i><sub>1</sub> > <i>u</i><sub>2</sub> > ... > <i>u<sub>k</sub></i> ≥ 0 и 0 ≤ <i>v</i><sub>1</sub> < <i>v</i><sub>2</sub> < ... < <i>v<sub>k</sub&g...
Играют двое. У первого 1000 чётных карточек (2, 4, ..., 2000), у второго – 1001 нечётная (1, 3, ... , 2001). Ходят по очереди, начинает первый. Ход состоит в следующем: игрок, чья очередь ходить, выкладывает одну из своих карточек, а другой, посмотрев на неё, выкладывает одну из своих карточек; тот, у кого число на карточке больше, записывает себе одно очко, а обе выложенные карточки выбрасываются. Всего получается 1000 ходов (одна карточка второго не используется). Какое наибольшее число очков может гарантировать себе каждый из игроков (как бы ни играл его соперник)?