Олимпиадные задачи по математике

Арифметическая прогрессия состоит из целых чисел, а её сумма – степень двойки.

Докажите, что количество членов прогрессии тоже степень двойки.

Внутри квадрата отметили несколько точек и соединили их отрезками между собой и с вершинами квадрата так, чтобы отрезки не пересекались друг с другом (нигде кроме концов). В результате квадрат разделился на треугольники, так что все отмеченные точки оказались в вершинах треугольников, и ни одна не попала на стороны треугольников. Для каждой отмеченной точки и для каждой вершины квадрата подсчитали число проведённых из неё отрезков. Могло ли так случиться, что все эти числа оказались чётными?

Целые ненулевые числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> таковы, что равенство <div align="center"><img src="/storage/problem-media/98505/problem_98505_img_2.gif"></div>выполнено при всех целых значениях<i>x</i>, входящих в область определения дроби, стоящей в левой части.   a) Докажите, что число<i>n</i>чётно.   б) При каком наименьшем<i>n</i>такие числа существуют?

Дан многоугольник, у которого каждые две соседние стороны перпендикулярны. Назовём две его вершины <i>не дружными</i>, если биссектрисы многоугольника, выходящие из этих вершин, перпендикулярны. Докажите, что для любой вершины количество не дружных с ней вершин чётно.

а) Торт имеет форму тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку? б) Та же задача для торта, имеющего форму треугольника с углами 20°, 30°, 130°. (Торт и коробку считайте плоскими фигурами.)

а) Торт имеет форму треугольника, в котором один угол в 3 раза больше другого. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку? б) Та же задача для торта в форме тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов.

(Торт и коробку считайте плоскими фигурами.)

В королевстве некоторые пары городов соединены железной дорогой. У короля есть полный список, в котором поименно перечислены все такие пары (каждый город имеет свое собственное имя). Оказалось, что для любой упорядоченной пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, а король не заметил бы изменений. Верно ли, что для любой пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, второй город оказался названным именем первого города, а король не заметил бы изменений?

Каждому городу в некоторой стране присвоен индивидуальный номер. Имеется список, в котором для каждой пары номеров указано, соединены города с данными номерами железной дорогой или нет. Оказалось, что, какие ни взять два номера <i>M</i> и <i>N</i> из списка, можно так перенумеровать города, что город с номером <i>M</i> получит номер <i>N</i>, но список по-прежнему будет верным. Верно ли, что, какие ни взять два номера <i>M</i> и <i>N</i> из списка, можно так перенумеровать города, что город с номером <i>M</i> получит номер <i>N</i>, город с номером <i>N</i> получит номер <i>M</i>, но список по-прежнему будет верным?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка