Олимпиадные задачи из источника «25 турнир (2003/2004 год)» для 11 класса - сложность 2 с решениями

На сторонах единичного квадрата как на гипотенузах построены во внешнюю сторону прямоугольные треугольники. Пусть <i>A, B, C</i> и <i>D</i> – вершины их прямых углов, а <i>O</i><sub>1</sub>, <i>O</i><sub>2</sub>, <i>O</i><sub>3</sub> и <i>O</i><sub>4</sub> – центры вписанных окружностей этих треугольников. Докажите, что

  а) площадь четырёхугольника <i>ABCD</i> не превосходит 2;

  б) площадь четырёхугольника <i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>O</i><sub>3</sub><i>O</i><sub>4</sub> не превосходит 1.

Периметр выпуклого четырёхугольника равен 2004, одна из диагоналей равна 1001. Может ли вторая диагональ быть равна  а) 1;  б) 2;  в) 1001?

Звенья <i>AB, BC</i> и <i>CD</i> ломаной <i>ABCD</i> равны по длине и касаются некоторой окружности.

Доказать, что точка <i>K</i> касания этой окружности со звеном <i>BC</i>, её центр <i>O</i> и точка пересечения прямых <i>AC</i> и <i>BD</i> лежат на одной прямой.

Докажите, что любое натуральное число можно представить в виде  3<sup><i>u</i><sub>1</sub></sup>2<sup><i>v</i><sub>1</sub></sup> + 3<sup><i>u</i><sub>2</sub></sup>2<sup><i>v</i><sub>2</sub></sup> + ... + 3<sup><i>u<sub>k</sub></i></sup>2<sup><i>v<sub>k</sub></i></sup>,  где  <i>u</i><sub>1</sub> > <i>u</i><sub>2</sub> > ... > <i>u<sub>k</sub></i> ≥ 0  и  0 ≤ <i>v</i><sub>1</sub> < <i>v</i><sub>2</sub> < ... < <i>v<sub>k</sub&g...

Имеется несколько юношей, каждый из которых знаком с некоторыми девушками. Две свахи знают, кто с кем знаком. Одна сваха заявляет: "Я могу одновременно поженить всех брюнетов так, чтобы каждый из них женился на знакомой ему девушке!" Вторая сваха говорит: "А я могу устроить судьбу всех блондинок: каждая выйдет замуж за знакомого юношу!" Этот диалог услышал любитель математики, который сказал: "В таком случае можно сделать и то, и другое!" Прав ли он?

Какое наименьшее количество квадратиков 1×1 надо нарисовать, чтобы получилось изображение квадрата 25×25, разделённого на 625 квадратиков 1×1?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка