Олимпиадные задачи из источника «осенний тур, базовый вариант, 8-9 класс» для 7 класса - сложность 2-3 с решениями
осенний тур, базовый вариант, 8-9 класс
НазадС начала учебного года Андрей записывал свои оценки по математике. Получая очередную оценку (2, 3, 4 или 5), он называл её <i>неожиданной</i>, если до этого момента она встречалась реже каждой из всех остальных возможных оценок. (Например, если бы он получил с начала года подряд оценки 3, 4, 2, 5, 5, 5, 2, 3, 4, 3, то неожиданными были бы первая пятерка и вторая четвёрка.) За весь учебный год Андрей получил 40 оценок – по 10 пятерок, четвёрок, троек и двоек (неизвестно, в каком порядке). Можно ли точно сказать, сколько оценок были для него неожиданными?
Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя
а) ровно в шесть раз;
б) ровно в пять раз?
Есть 99 палочек с длинами 1, 2, 3, ..., 99. Можно ли из них сложить контур какого-нибудь прямоугольника?