Олимпиадные задачи из источника «осенний тур, базовый вариант, 10-11 класс» - сложность 2-3 с решениями
осенний тур, базовый вариант, 10-11 класс
НазадДокажите, что в прямоугольном треугольнике ортоцентр треугольника, образованного точками касания сторон с вписанной окружностью, лежит на высоте, проведённой из прямого угла.
Петя нарисовал многоугольник площадью 100 клеток, проводя границы по линиям квадратной сетки. Он проверил, что его можно разрезать по границам клеток и на два равных многоугольника, и на 25 равных многоугольников. Обязательно ли тогда его можно разрезать по границам клеток и на 50 равных многоугольников?
Сто медвежат нашли в лесу ягоды: самый младший успел схватить 1 ягоду, медвежонок постарше – 2 ягоды, следующий – 4 ягоды, и так далее, самому старшему досталось 2<sup>99</sup> ягод. Лиса предложила им поделить ягоды "по справедливости". Она может подойти к двум медвежатам и распределить их ягоды поровну между ними, а если при этом возникает лишняя ягода, то лиса её съедает. Такие действия она продолжает до тех пор, пока у всех медвежат не станет ягод поровну. Какое наибольшее количество ягод может съесть лиса?
На прямой отмечено 100 точек, и ещё одна точка отмечена вне прямой. Рассмотрим все треугольники с вершинами в этих точках.
Какое наибольшее количество из них могут быть равнобедренными?
Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами <i>p</i> и <i>q</i>. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно <i>p + q</i>?