Олимпиадные задачи из источника «весенний тур, сложный вариант, 10-11 класс» для 4-10 класса - сложность 3 с решениями
весенний тур, сложный вариант, 10-11 класс
НазадПри каких натуральных <i>n</i> для каждого целого <i>k ≥ n</i> найдётся кратное <i>n</i> число с суммой цифр <i>k</i>?
В треугольнике <i>ABC</i> c углом <i>A</i>, равным 45°, проведена медиана <i>AM</i>. Прямая <i>b</i> симметрична прямой <i>AM</i> относительно высоты <i>BB</i><sub>1</sub>, а прямая <i>c</i> симметрична прямой <i>AM</i> относительно высоты <i>CC</i><sub>1</sub>. Прямые <i>b</i> и <i>c</i> пересеклись в точке <i>X</i>. Докажите, что <i>AX = BC</i>.
Петя раскрасил каждую клетку квадрата 1000×1000 в один из 10 цветов. Также он придумал такой 10-клеточный многоугольник Ф, что при любом способе положить его по границам клеток на раскрашенный квадрат, все 10 накрытых им клеток будут разного цвета. Обязательно ли Ф – прямоугольник?