Олимпиадные задачи из источника «осенний тур, 9-10 класс» - сложность 3-4 с решениями
осенний тур, 9-10 класс
НазадОколо остроугольного треугольника <i>ABC</i> описана окружность с центром <i>O</i>. Перпендикуляры, опущенные из точки <i>O</i> на стороны треугольника, продолжены до пересечения с окружностью в точках <i>K</i>, <i>M</i> и <i>P</i>. Докажите, что <img src="/storage/problem-media/108605/problem_108605_img_2.gif"> где <i>Q</i> – центр вписанной окружности треугольника <i>ABC</i>.
На бесконечной во все стороны шахматной доске выделено некоторое множество клеток <i>A</i>. На всех клетках доски, кроме множества <i>A</i>, стоят короли. Все короли могут по команде одновременно сделать ход, заключающийся в том, что король либо остаётся на месте, либо занимает соседнее поле, то есть делает "ход короля". При этом он может занять и то поле, с которого сходит другой король, но в результате хода двум королям оказаться в одной клетке запрещается. Существует ли такое <i>k</i> и такой способ движения королей, что после <i>k</i> ходов вся доска будет заполнена королями? Рассмотрите варианты:
а) <i>A</i> есть множество всех клеток, у которых обе координаты кратны 100 (предполагается, что одна горизонтальная...
<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... – возрастающая последовательность натуральных чисел. Известно, что <i>a<sub>a<sub>k</sub></sub></i> = 3<i>k</i> для любого <i>k</i>.
Найти а) <i>a</i><sub>100</sub>; б) <i>a</i><sub>1983</sub>.