Олимпиадные задачи из источника «весенний тур, основной вариант, 9-10 класс»

  а) Квадрат разбит на прямоугольники. <i>Цепочкой</i> называется такое подмножество <i>K</i> множества этих прямоугольников, что существует сторона <i>S</i> квадрата, целиком закрытая проекциями прямоугольников из <i>K</i>, но при этом ни в какую точку <i>S</i> не проектируются внутренние точки двух прямоугольников из <i>K</i> (мы относим к прямоугольнику и его стороны). Доказать, что любые два прямоугольника разбиения входят в некоторую цепочку.   б) Аналогичная задача для куба, разбитого на прямоугольные параллелепипеды (в определении цепочки нужно заменить сторону на ребро).

Выпуклой фигурой <i>F</i> нельзя накрыть полукруг радиуса <i>R</i>. Может ли случиться, что двумя фигурами, равными <i>F</i>, можно накрыть круг радиуса <i>R</i>?

В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.

  Радиус <i>OM</i> круга равномерно вращается, поворачиваясь в секунду на угол <sup>360°</sup>/<sub><i>N</i></sub>  (<i>N</i> – натуральное число, большее 3). В начальный момент он занимал положение <i>OM</i><sub>0</sub>, через секунду – <i>OM</i><sub>1</sub>, ещё через две секунды после этого (то есть через три секунды после начала) – <i>OM</i><sub>2</sub>, ещё через три секунды после этого – <i>OM</i><sub>3</sub>, и т. д., ещё через  <i>N</i> – 1  секунду после <i>ОМ</i><sub><i>N</i>–2</sub>  – <i>OM</i><sub><i>N</i>–1</sub>.

  При каких <i>N...

Докажите, что площадь проекции куба с ребром 1 на любую плоскость численно равна длине его проекции на прямую, перпендикулярную этой плоскости.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка