Олимпиадные задачи из источника «Региональный этап» - сложность 3 с решениями

Можно ли в таблице 11×11 расставить натуральные числа от 1 до 121 так, чтобы числа, отличающиеся друг от друга на единицу, располагались в клетках с общей стороной, а все точные квадраты попали в один столбец?

Найдите все такие простые числа <i>p</i>, что число  <i>p</i>² + 11  имеет ровно шесть различных делителей (включая единицу и само число).

Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).

Существует ли такая раскраска, что для любых трёх цветов найдутся три вершины, попарно соединенные между собой отрезками этих цветов?

<i>N</i>³ единичных кубиков просверлены по диагонали и плотно нанизаны на нить, после чего нить связана в кольцо (то есть вершина первого кубика соединена с вершиной последнего). При каких <i>N</i> такое ожерелье из кубиков можно упаковать в кубическую коробку с ребром длины <i>N</i>?

Рассматриваются такие квадратичные функции  <i>f</i>(<i>x</i>) = <i>ax</i>² + <i>bx + c</i>,  что  <i>a < b</i>  и  <i>f</i>(<i>x</i>) ≥ 0  для всех <i>x</i>.

Какое наименьшее значение может принимать выражение  <sup><i>a+b+c</i></sup>/<sub><i>b–a</i></sub> ?

Дана функция<i> f</i>(<i>x</i>)<i>=<img src="/storage/problem-media/109863/problem_109863_img_2.gif"> </i>. Найдите<i>f</i>(<i>.. f</i>(<i>f</i>(19))<i>..</i>)<i></i>95<i> раз</i>.

Числовая последовательность<i> a<sub>0</sub> </i>,<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>, такова, что при всех неотрицательных<i> m </i>и<i> n </i>(<i> m<img src="/storage/problem-media/109861/problem_109861_img_2.gif"> n </i>) выполняется соотношение <center><i>

a<sub>m+n</sub>+a<sub>m-n</sub>=<img src="/storage/problem-media/109861/problem_109861_img_3.gif"></i>(<i>a</i>2<i>m+a</i>2<i>n</i>)<i>.

</i></center> Найдите<i> a</i>1995, если<i> a<sub>1</sub>=</i>1.

В прямоугольном параллелепипеде одно из сечений является правильным шестиугольником. Докажите, что этот параллелепипед – куб.

В остроугольном треугольнике <i>ABC</i> на высоте <i>BK</i> как на диаметре построена окружность <i>S</i>, пересекающая стороны <i>AB</i> и <i>BC</i> в точках <i>E</i> и <i>F</i> соответственно. К окружности <i>S</i> в точках <i>E</i> и <i>F</i> проведены касательные. Докажите, что их точка пересечения лежит на прямой, содержащей медиану треугольника <i>ABC</i>, проведённую из вершины <i>B</i>.

Окружности<i> S</i>1и<i> S</i>2с центрами<i> O</i>1и<i> O</i>2пересекаются в точках<i> A </i>и<i> B </i>. Окружность, проходящая через точки<i> O</i>1,<i> O</i>2и<i> A </i>, вторично пересекает окружность<i> S</i>1в точке<i> D </i>, окружность<i> S</i>2– в точке<i> E </i>, а прямую<i> AB </i>– в точке<i> C </i>. Докажите, что<i> CD=CB=CE </i>.

Две окружности радиусов<i> R </i>и<i> r </i>касаются прямой<i> l </i>в точках<i> A </i>и<i> B </i>и пересекаются в точках<i> C </i>и<i> D </i>. Докажите, что радиус окружности, описанной около треугольника<i> ABC </i>не зависит от длины отрезка<i> AB </i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка