Олимпиадные задачи из источника «Региональный этап» для 10 класса - сложность 3-5 с решениями
Имеется 8 монет, 7 из которых – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за четыре взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных?
Докажите, что если 0 < <i>a, b</i> < 1, то <img align="middle" src="/storage/problem-media/109897/problem_109897_img_2.gif"> .
Пусть <i>a, b</i> и <i>c</i> – попарно взаимно простые натуральные числа. Найдите все возможные значения <img align="absmiddle" src="/storage/problem-media/109894/problem_109894_img_2.gif">, если известно, что это число целое.
На прямой через равные промежутки отмечены 1996 точек. Петя раскрашивает половину из них в красный цвет, а остальные – в синий. Затем Вася разбивает их на пары красная-синяя так, чтобы сумма расстояний между точками в парах была максимальной. Докажите, что этот максимум не зависит от того, какую раскраску сделал Петя.
В каждой клетке квадратной таблицы размером <i>n×n</i> клеток (<i>n</i> ≥ 3) записано число 1 или –1. Если взять любые две строки, перемножить числа, стоящие в них друг над другом и сложить <i>n</i> получившихся произведений, то сумма будет равна 0. Докажите, что число <i>n</i> делится на 4.
Верно ли, что из произвольного треугольника можно вырезать три равные фигуры, площадь каждой из которых больше четверти площади треугольника?
Существует ли такая бесконечная периодическая последовательность, состоящая из букв <i>a</i> и <i>b</i>, что при одновременной замене всех букв <i>a</i> на <i>aba</i> и букв <i>b</i> на <i>bba</i> она переходит в себя (возможно, со сдвигом)?
Найдите все такие натуральные <i>n</i>, что при некоторых различных натуральных <i>a, b, c</i> и <i>d</i> среди чисел <div align="center"><img src="/storage/problem-media/109883/problem_109883_img_2.gif"></div>есть по крайней мере два числа, равных<i>n</i>.
Дана функция<i> f</i>(<i>x</i>)<i> = | </i>4<i> - </i>4<i>|x|| - </i>2. Сколько решений имеет уравнение<i> f</i>(<i>f</i>(<i>x</i>))<i> = x </i>?
Многочлен <i>P</i>(<i>x</i>) степени <i>n</i> имеет <i>n</i> различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?
Длина наибольшей стороны треугольника равна 1. Докажите, что три круга радиуса<i> <img src="/storage/problem-media/109880/problem_109880_img_2.gif"> </i>с центрами в вершинах покрывают весь треугольник.
Назовем медианой системы 2<i> n </i>точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2<i> n </i>точек, никакие три из которых не лежат на одной прямой?
Дан треугольник<i> A</i>0<i>B</i>0<i>C</i>0. На отрезке<i> A</i>0<i>B</i>0отмечены точки<i> A</i>1,<i> A</i>2<i>, ,A<sub>n</sub> </i>, а на отрезке<i> B</i>0<i>C</i>0– точки<i> C</i>1,<i> C</i>2<i>, , C<sub>n</sub> </i>, причём все отрезки<i> A<sub>i</sub>C<sub>i+</sub></i>1(<i> i=</i>0<i>,</i>1<i>, n-</i>1), параллельны между собой и все отрезки<i> C<sub>i</sub>A<sub>i+</sub></i>1(<i> i=</i>0<i>,</i>1<i>, n-</i>1) – тоже. Отрезки<i> C</i>0<i>A</i>...
В треугольнике <i>ABC</i> взята такая точка <i>O</i>, что ∠<i>COA</i> = ∠<i>B</i> + 60°, ∠<i>COB</i> = ∠<i>A</i> + 60°, <i>AOB</i> = ∠<i>C</i> + 60°. Докажите, что если из отрезков <i>AO, BO</i> и <i>CO</i> можно составить треугольник, то из высот треугольника <i>ABC</i> тоже можно составить треугольник и эти треугольники подобны.