Олимпиадные задачи из источника «Региональный этап» для 11 класса - сложность 1-4 с решениями

Даны положительные числа <i>b</i> и <i>c</i>. Докажите неравенство  (<i>b</i> – <i>c</i>)<sup>2011</sup>(<i>b</i> + <i>c</i>)<sup>2011</sup>(<i>c</i> – <i>b</i>)<sup>2011</sup> ≥ (<i>b</i><sup>2011</sup> – <i>c</i><sup>2011</sup>)(<i>b</i><sup>2011</sup> + <i>c</i><sup>2011</sup>)(<i>c</i><sup>2011</sup> – <i>b</i><sup>2011</sup>).

Вася нарисовал на плоскости несколько окружностей и провёл всевозможные общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?

Остроугольный треугольник <i>ABC</i> вписан в окружность ω. Касательные к ω, проведённые через точки <i>B</i> и <i>C</i>, пересекают касательную к ω, проведённую через точку <i>A</i>, в точках <i>K</i> и <i>L</i> соответственно. Прямая, проведённая через <i>K</i> параллельно <i>AB</i>, пересекается с прямой, проведённой через <i>L</i> параллельно <i>AC</i>, в точке <i>P</i>. Докажите, что  <i>BP = CP</i>.

2011 складов соединены дорогами так, что от каждого склада можно проехать к любому другому, возможно, проехав по нескольким дорогам. На складах находится по  <i>x</i><sub>1</sub>, ..., <i>x</i><sub>2011</sub>  кг цемента соответственно. За один рейс можно провезти с произвольного склада на другой по соединяющей их дороге произвольное количество цемента. В итоге на складах по плану должно оказаться по  <i>y</i><sub>1</sub>, ..., <i>y</i><sub>2011</sub>  кг цемента соответственно, причём

<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + ... + <i>x</i><sub>2011</sub> = <i>y</i><sub>1</sub> + <i>y<...

На окружности, описанной около прямоугольника <i>ABCD</i>, выбрана точка <i>K</i>. Оказалось, что прямая <i>CK</i> пересекает отрезок <i>AD</i> в такой точке <i>M</i>, что

<i>AM</i> : <i>MD</i> = 2.  Пусть <i>O</i> – центр прямоугольника. Докажите, что точка пересечения медиан треугольника <i>OKD</i> лежит на описанной окружности треугольника <i>COD</i>.

Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка