Олимпиадные задачи из источника «Региональный этап» для 11 класса

По кругу расставлено 300 положительных чисел. Могло ли случиться так, что каждое из этих чисел, кроме одного, равно разности своих соседей?

Есть полусферическая ваза, закрытая плоской крышкой. В вазе лежат четыре одинаковых апельсина, касаясь вазы, и один грейпфрут, касающийся всех четырёх апельсинов. Верно ли, что все четыре точки касания грейпфрута с апельсинами обязательно лежат в одной плоскости? (Все фрукты являются шарами.)

Квадратный трёхчлен  <i>f</i>(<i>x</i>) имеет два различных корня. Оказалось, что для любых чисел <i>a</i> и <i>b</i> верно неравенство  <i>f</i>(<i>a</i>² + <i>b</i>²) ≥ <i>f</i>(2<i>ab</i>).

Докажите, что хотя бы один из корней этого трёхчлена – отрицательный.

Продолжения медиан <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> треугольника <i>ABC</i> пересекают его описанную окружность в точках <i>A</i><sub>0</sub>, <i>B</i><sub>0</sub> и <i>C</i><sub>0</sub> соответственно. Оказалось, что площади треугольников <i>ABC</i><sub>0</sub>, <i>AB</i><sub>0</sub><i>C</i> и <i>A</i><sub>0</sub><i>BC</i> равны. Докажите, что треугольник <i>ABC</i> равносторонний.

На новогодний вечер пришли несколько супружеских пар, у каждой из которых было от 1 до 10 детей. Дед Мороз выбирал одного ребёнка, одну маму и одного папу из трёх разных семей и катал их в санях. Оказалось, что у него было ровно 3630 способов выбрать нужную тройку людей. Сколько всего могло быть детей на этом вечере?

Петя хочет выписать все возможные последовательности из 100 натуральных чисел, в каждой из которых хотя бы раз встречается число 4 или 5, а любые два соседних члена различаются не больше, чем на 2. Сколько последовательностей ему придётся выписать?

Дано натуральное число  <i>n</i> ≥ 2.  Рассмотрим все такие покраски клеток доски <i>n</i>×<i>n</i> в <i>k</i> цветов, что каждая клетка покрашена ровно в один цвет и все <i>k</i> цветов встречаются. При каком наименьшем <i>k</i> в любой такой покраске найдутся четыре окрашенных в четыре разных цвета клетки, расположенные в пересечении двух строк и двух столбцов?

Коэффициенты <i>a, b, c</i> квадратного трёхчлена  <i>f</i>(<i>x</i>) = <i>ax</i>² + <i>bx + c</i>  – натуральные числа, сумма которых равна 2000. Паша может изменить любой коэффициент на 1, заплатив 1 рубль. Докажите, что он может получить квадратный трёхчлен, имеющий хотя бы один целый корень, заплатив не более 1050 рублей.

Положительные числа <i>a, b, c</i> удовлетворяют соотношению  <i>ab + bc + ca</i> = 1.  Докажите, что   <img align="absmiddle" src="/storage/problem-media/65122/problem_65122_img_2.gif">

Пусть <i>AL</i> – биссектриса треугольника <i>ABC</i>. Серединный перпендикуляр к отрезку<i>AL</i> пересекает описанную окружность Ω треугольника <i>ABC</i>, в точках <i>P</i> и <i>Q</i>. Докажите, что описанная окружность треугольника <i>PLQ</i>, касается стороны <i>BC</i>.

На плоскости отметили все вершины правильного <i>n</i>-угольника, а также его центр. Затем нарисовали контур этого <i>n</i>-угольника, и центр соединили со всеми вершинами; в итоге <i>n</i>-угольник разбился на <i>n</i> треугольников. Вася записал в каждую отмеченную точку по числу (среди чисел могут быть равные). В каждый треугольник разбиения он записал в произвольном порядке три числа, стоящих в его вершинах; после этого он стёр числа в отмеченных точках. При каких <i>n</i> по тройкам чисел, записанным в треугольниках, Петя всегда сможет восстановить число в каждой отмеченной точке?

Целые числа <i>a, x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub>13</sub> таковы, что  <i>a</i> = (1 + <i>x</i><sub>1</sub>)(1 + <i>x</i><sub>2</sub>)...(1 + <i>x</i><sub>13</sub>) = (1 – <i>x</i><sub>1</sub>)(1 – <i>x</i><sub>2</sub>)...(1 – <i>x</i><sub>13</sub>).  Докажите, что  <i>ax</i><sub>1</sub><i>x</i><sub>2</sub>...<i>x</i><sub>13</sub> = 0.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка