Олимпиадные задачи из источника «Заключительный этап» для 11 класса - сложность 1-2 с решениями

Число <i>x</i> таково, что обе суммы  <i>S</i> = sin 64<i>x</i> + sin 65<i>x</i>  и  <i>C</i> = cos 64<i>x</i> + cos 65<i>x</i>  – рациональные числа.

Докажите, что в одной из этих сумм оба слагаемых рациональны.

Пусть <i>P</i>(<i>x</i>) – многочлен степени  <i>n</i> ≥ 2  с неотрицательными коэффициентами, а <i>a, b</i> и <i>c</i> – длины сторон некоторого остроугольного треугольника.

Докажите, что числа  <img align="absmiddle" src="/storage/problem-media/66160/problem_66160_img_2.gif">  также являются длинами сторон некоторого остроугольного треугольника.

На координатной плоскости нарисованы графики двух приведённых квадратных трёхчленов и две непараллельные прямые <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub>. Известно, что отрезки, высекаемые графиками на <i>l</i><sub>1</sub>, равны, и отрезки, высекаемые графиками на <i>l</i><sub>2</sub>, также равны. Докажите, что графики трёхчленов совпадают.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка